different means test both via direct factor definition and toFactorGraph
parent
3c722acedc
commit
d4e5a9be5d
|
@ -346,7 +346,84 @@ TEST(GaussianMixtureFactor, DifferentCovariances) {
|
||||||
DiscreteValues dv1{{M(1), 1}};
|
DiscreteValues dv1{{M(1), 1}};
|
||||||
|
|
||||||
// regression
|
// regression
|
||||||
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv0), 1e-9);
|
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
|
||||||
|
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
||||||
|
|
||||||
|
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
||||||
|
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
|
||||||
|
|
||||||
|
EXPECT(assert_equal(expected_m1, actual_m1));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
/**
|
||||||
|
* @brief Test components with differing covariances
|
||||||
|
* but with a Bayes net P(Z|X, M) converted to a FG.
|
||||||
|
*/
|
||||||
|
TEST(GaussianMixtureFactor, DifferentCovariances2) {
|
||||||
|
DiscreteKey m1(M(1), 2);
|
||||||
|
|
||||||
|
Values values;
|
||||||
|
double x1 = 1.0, x2 = 1.0;
|
||||||
|
values.insert(X(1), x1);
|
||||||
|
values.insert(X(2), x2);
|
||||||
|
|
||||||
|
double between = 0.0;
|
||||||
|
|
||||||
|
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
|
||||||
|
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
|
||||||
|
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||||
|
|
||||||
|
auto f0 =
|
||||||
|
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
|
||||||
|
auto f1 =
|
||||||
|
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
|
||||||
|
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||||
|
|
||||||
|
// Create via toFactorGraph
|
||||||
|
using symbol_shorthand::Z;
|
||||||
|
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||||
|
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||||
|
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||||
|
//
|
||||||
|
{X(1), H0_1 /*Sp1*/},
|
||||||
|
{X(2), H0_2 /*Tp2*/}};
|
||||||
|
|
||||||
|
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||||
|
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||||
|
//
|
||||||
|
{X(1), H1_1 /*Sp1*/},
|
||||||
|
{X(2), H1_2 /*Tp2*/}};
|
||||||
|
auto gm = new gtsam::GaussianMixture(
|
||||||
|
{Z(1)}, {X(1), X(2)}, {m1},
|
||||||
|
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
|
||||||
|
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
|
||||||
|
gtsam::HybridBayesNet bn;
|
||||||
|
bn.emplace_back(gm);
|
||||||
|
|
||||||
|
gtsam::VectorValues measurements;
|
||||||
|
measurements.insert(Z(1), gtsam::Z_1x1);
|
||||||
|
// Create FG with single GaussianMixtureFactor
|
||||||
|
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
|
||||||
|
|
||||||
|
// Linearized prior factor on X1
|
||||||
|
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||||
|
mixture_fg.push_back(prior);
|
||||||
|
|
||||||
|
auto hbn = mixture_fg.eliminateSequential();
|
||||||
|
|
||||||
|
VectorValues cv;
|
||||||
|
cv.insert(X(1), Vector1(0.0));
|
||||||
|
cv.insert(X(2), Vector1(0.0));
|
||||||
|
|
||||||
|
// Check that the error values at the MLE point μ.
|
||||||
|
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||||
|
|
||||||
|
DiscreteValues dv0{{M(1), 0}};
|
||||||
|
DiscreteValues dv1{{M(1), 1}};
|
||||||
|
|
||||||
|
// regression
|
||||||
|
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
|
||||||
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
||||||
|
|
||||||
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
||||||
|
|
Loading…
Reference in New Issue