Working IMUKitti example with VO only (slow!)

release/4.3a0
Luca Carlone 2013-08-11 22:45:58 +00:00
parent 18a72718aa
commit d46902ea06
2 changed files with 300 additions and 99 deletions

View File

@ -6,8 +6,7 @@ import gtsam.*;
%% Read metadata and compute relative sensor pose transforms
IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
IMUinBody = Pose3.Expmap([
IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
if ~IMUinBody.equals(Pose3, 1e-5)
error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same';
@ -15,14 +14,12 @@ end
VO_metadata = importdata('KittiRelativePose_metadata.txt');
VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
VOinBody = Pose3.Expmap([
VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
GPS_metadata = importdata('KittiGps_metadata.txt');
GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2);
GPSinBody = Pose3.Expmap([
GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz;
GPSinBody = Pose3.Expmap([GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz;
GPS_metadata.BodyPrx; GPS_metadata.BodyPry; GPS_metadata.BodyPrz; ]);
VOinIMU = IMUinBody.inverse().compose(VOinBody);
@ -86,74 +83,85 @@ factors.add(PriorFactorLieVector(symbol('v',0), ...
factors.add(PriorFactorConstantBias(symbol('b',0), ...
imuBias.ConstantBias(bias_acc,bias_omega), noiseModel.Isotropic.Sigma(6, sigma_init_b)));
%% Main loop:
% (1) we read the measurements
% (2) we create the corresponding factors in the graph
% (3) we solve the graph to obtain and optimal estimate of robot trajectory
% lastTime = 0; TODO: delete?
% lastIndex = 0; TODO: delete?
currentSummarizedMeasurement = [];
% Measurement types:
% 1: VO
% 2: GPS
% 3: IMU
times = sortrows( [ ...
timestamps = sortrows( [ ...
[VO_data.Time]' 1*ones(length([VO_data.Time]), 1); ...
%[GPS_data.Time]' 2*ones(length([GPS_data.Time]), 1); ...
[IMU_data.Time]' 3*ones(length([IMU_data.Time]), 1); ...
%[IMU_data.Time]' 3*ones(length([IMU_data.Time]), 1); ...
], 1); % this are the time-stamps at which we want to initialize a new node in the graph
t_previous = 0;
poseIndex = 0;
for measurementIndex = 1:size(times,1)
%% Main loop:
% (1) we read the measurements
% (2) we create the corresponding factors in the graph
% (3) we solve the graph to obtain and optimal estimate of robot trajectory
% t_previous = 0;%LC
% poseIndex = 0;%LC
% currentPose = Pose3; %LC
position= []; %LC
for measurementIndex = 1:size(timestamps,1)
measurementIndex
% currentPose = currentPose.compose(VO_data(measurementIndex).RelativePose);%LC
%
% position(measurementIndex,:) = currentPose.translation.vector;%LC
% At each non=IMU measurement we initialize a new node in the graph
currentPoseKey = symbol('x',poseIndex);
currentVelKey = symbol('v',poseIndex);
currentBiasKey = symbol('b',poseIndex);
t = times(measurementIndex, 1);
type = times(measurementIndex, 2);
t = timestamps(measurementIndex, 1);
type = timestamps(measurementIndex, 2);
if type == 3
% Integrate IMU
if isempty(currentSummarizedMeasurement)
% Create initial empty summarized measurement
% we assume that each row of the IMU.txt file has the following structure:
% timestamp delta_t acc_x acc_y acc_z omega_x omega_y omega_z
currentBias = isam.calculateEstimate(currentBiasKey - 1);
currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
end
% Accumulate preintegrated measurement
deltaT = IMU_data(index).dt;
accMeas = IMU_data(index).acc_omega(1:3);
omegaMeas = IMU_data(index).acc_omega(4:6);
currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
else
% Create IMU factor
factors.add(ImuFactor( ...
currentPoseKey-1, currentVelKey-1, ...
currentPoseKey, currentVelKey, ...
currentBiasKey-1, currentSummarizedMeasurement, g, cor_v, ...
currentSummarizedMeasurement.PreintMeasCov));
% Reset summarized measurement
currentSummarizedMeasurement = [];
if type == 1
% Create VO factor
elseif type == 2
% Create GPS factor
end
poseIndex = poseIndex + 1;
end
% if type == 3
% % Integrate IMU
%
% if isempty(currentSummarizedMeasurement)
% % Create initial empty summarized measurement
% % we assume that each row of the IMU.txt file has the following structure:
% % timestamp delta_t acc_x acc_y acc_z omega_x omega_y omega_z
% currentBias = isam.calculateEstimate(currentBiasKey - 1);
% currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
% currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
% IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
% end
%
% % Accumulate preintegrated measurement
% deltaT = IMU_data(index).dt;
% accMeas = IMU_data(index).acc_omega(1:3);
% omegaMeas = IMU_data(index).acc_omega(4:6);
% currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
%
% else
% % Create IMU factor
% factors.add(ImuFactor( ...
% currentPoseKey-1, currentVelKey-1, ...
% currentPoseKey, currentVelKey, ...
% currentBiasKey-1, currentSummarizedMeasurement, g, cor_v, ...
% currentSummarizedMeasurement.PreintMeasCov));
%
% % Reset summarized measurement
% currentSummarizedMeasurement = [];
%
% if type == 1
% % Create VO factor
% elseif type == 2
% % Create GPS factor
% end
%
% poseIndex = poseIndex + 1;
% end
% =======================================================================
@ -178,46 +186,49 @@ for measurementIndex = 1:size(times,1)
% =======================================================================
%% add factor corresponding to VO measurements (if available at the current time)
% =======================================================================
if isempty( find([VO_data.Time] == t, 1) )== 0 % it is a GPS measurement
if length( find([VO_data.Time] == t) ) > 1
error('more VO measurements at the same time stamp: it should be an error')
% %% add factor corresponding to VO measurements (if available at the current time)
% % =======================================================================
% if isempty( find([VO_data.Time] == t, 1) )== 0 % it is a GPS measurement
% if length( find([VO_data.Time] == t) ) > 1
% error('more VO measurements at the same time stamp: it should be an error')
% end
%
% index = find([VO_data.Time] == t, 1); % the row of the IMU_data matrix that we have to integrate
%
% VOpose = VO_data(index).RelativePose;
% noiseModelVO = noiseModel.Diagonal.Sigmas([ IMU_metadata.RotationSigma * [1;1;1]; IMU_metadata.TranslationSigma * [1;1;1] ]);
%
% % add factor
% disp('TODO: is the VO noise right?')
% factors.add(BetweenFactorPose3(lastVOPoseKey, currentPoseKey, VOpose, noiseModelVO));
%
% lastVOPoseKey = currentPoseKey;
% end
% % =======================================================================
%
% disp('TODO: add values')
% % values.insert(, initialPose);
% % values.insert(symbol('v',lastIndex+1), initialVel);
%
% %% Update solver
% % =======================================================================
% isam.update(factors, values);
% factors = NonlinearFactorGraph;
% values = Values;
%
% isam.calculateEstimate(currentPoseKey);
% % M = isam.marginalCovariance(key_pose);
% % =======================================================================
%
% previousPoseKey = currentPoseKey;
% previousVelKey = currentVelKey;
% t_previous = t;
end
index = find([VO_data.Time] == t, 1); % the row of the IMU_data matrix that we have to integrate
figure
plot(position(:,1),position(:,2))
VOpose = VO_data(index).RelativePose;
noiseModelVO = noiseModel.Diagonal.Sigmas([ IMU_metadata.RotationSigma * [1;1;1]; IMU_metadata.TranslationSigma * [1;1;1] ]);
% add factor
disp('TODO: is the VO noise right?')
factors.add(BetweenFactorPose3(lastVOPoseKey, currentPoseKey, VOpose, noiseModelVO));
lastVOPoseKey = currentPoseKey;
end
% =======================================================================
disp('TODO: add values')
% values.insert(, initialPose);
% values.insert(symbol('v',lastIndex+1), initialVel);
%% Update solver
% =======================================================================
isam.update(factors, values);
factors = NonlinearFactorGraph;
values = Values;
isam.calculateEstimate(currentPoseKey);
% M = isam.marginalCovariance(key_pose);
% =======================================================================
previousPoseKey = currentPoseKey;
previousVelKey = currentVelKey;
t_previous = t;
end
disp('TODO: display results')
% figure(1)
% hold on;
% plot(positions(1,:), positions(2,:), '-b');

View File

@ -0,0 +1,190 @@
close all
clc
import gtsam.*;
%% Read metadata and compute relative sensor pose transforms
IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
if ~IMUinBody.equals(Pose3, 1e-5)
error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same';
end
VO_metadata = importdata('KittiRelativePose_metadata.txt');
VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
GPS_metadata = importdata('KittiGps_metadata.txt');
GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2);
GPSinBody = Pose3.Expmap([GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz;
GPS_metadata.BodyPrx; GPS_metadata.BodyPry; GPS_metadata.BodyPrz; ]);
VOinIMU = IMUinBody.inverse().compose(VOinBody);
GPSinIMU = IMUinBody.inverse().compose(GPSinBody);
%% Read data and change coordinate frame of GPS and VO measurements to IMU frame
IMU_data = importdata('KittiEquivBiasedImu.txt');
IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
[IMU_data.acc_omega] = deal(imum{:});
%IMU_data = rmfield(IMU_data, { 'accelX' 'accelY' 'accelZ' 'omegaX' 'omegaY' 'omegaZ' });
sigma_init_x = noiseModel.Diagonal.Precisions([1;1;1; 1;1;1]);
sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
sigma_init_b = noiseModel.Isotropic.Sigma(6, 0.01);
g = [0;0;-9.8];
w_coriolis = [0;0;0];
clear imum
VO_data = importdata('KittiRelativePose.txt');
VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2);
% Merge relative pose fields and convert to Pose3
logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ];
logposes = num2cell(logposes, 2);
relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes);
relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes);
[VO_data.RelativePose] = deal(relposes{:});
VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' });
noiseModelVO = noiseModel.Diagonal.Sigmas([ VO_metadata.RotationSigma * [1;1;1]; VO_metadata.TranslationSigma * [1;1;1] ]);
clear logposes relposes
GPS_data = importdata('KittiGps.txt');
GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2);
% Convert GPS from lat/long to meters
[ x, y, ~ ] = deg2utm( [GPS_data.Latitude], [GPS_data.Longitude] );
for i = 1:numel(x)
GPS_data(i).Position = gtsam.Point3(x(i), y(i), GPS_data(i).Altitude);
end
% % Calculate GPS sigma in meters
% [ xSig, ySig, ~ ] = deg2utm( [GPS_data.Latitude] + [GPS_data.PositionSigma], ...
% [GPS_data.Longitude] + [GPS_data.PositionSigma]);
% xSig = xSig - x;
% ySig = ySig - y;
%% Start at time of first GPS measurement
firstGPSPose = 1;
%% Get initial conditions for the estimated trajectory
% currentPoseGlobal = Pose3(Rot3, GPS_data(firstGPSPose).Position); % initial pose is the reference frame (navigation frame)
currentPoseGlobal = Pose3;
currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
%% Solver object
isamParams = ISAM2Params;
isamParams.setFactorization('QR');
isamParams.setRelinearizeSkip(1);
isam = gtsam.ISAM2(isamParams);
newFactors = NonlinearFactorGraph;
newValues = Values;
%% Main loop:
% (1) we read the measurements
% (2) we create the corresponding factors in the graph
% (3) we solve the graph to obtain and optimal estimate of robot trajectory
timestamps = sortrows( [ ...
[VO_data.Time]' 1*ones(length([VO_data.Time]), 1); ...
%[GPS_data.Time]' 2*ones(length([GPS_data.Time]), 1); ...
%[IMU_data.Time]' 3*ones(length([IMU_data.Time]), 1); ...
], 1); % this are the time-stamps at which we want to initialize a new node in the graph
timestamps = timestamps(15:end,:);
VOPoseKeys = [];
for measurementIndex = 1:length(timestamps)
% At each non=IMU measurement we initialize a new node in the graph
currentPoseKey = symbol('x',measurementIndex);
currentVelKey = symbol('v',measurementIndex);
currentBiasKey = symbol('b',measurementIndex);
t = timestamps(measurementIndex, 1);
type = timestamps(measurementIndex, 2);
%% bookkeeping
if type == 1 % we store the keys corresponding to VO measurements
VOPoseKeys = [VOPoseKeys; currentPoseKey];
end
if measurementIndex == 1
%% Create initial estimate and prior on initial pose, velocity, and biases
newValues.insert(currentPoseKey, currentPoseGlobal);
newValues.insert(currentVelKey, currentVelocityGlobal);
newValues.insert(currentBiasKey, currentBias);
newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
else
t_previous = timestamps(measurementIndex-1, 1);
%% Summarize IMU data between the previous GPS measurement and now
IMUindices = find([IMU_data.Time] >= t_previous & [IMU_data.Time] <= t);
if ~isempty(IMUindices) % if there are IMU measurements to integrate
currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
for imuIndex = IMUindices
accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ];
omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ];
deltaT = IMU_data(imuIndex).dt;
currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
end
% Create IMU factor
newFactors.add(ImuFactor( ...
currentPoseKey-1, currentVelKey-1, ...
currentPoseKey, currentVelKey, ...
currentBiasKey, currentSummarizedMeasurement, g, w_coriolis));
else % if there are no IMU measurements
error('no IMU measurements in [t_previous, t]')
end
newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), sigma_init_b));
%% Create GPS factor
if type == 2
newFactors.add(PriorFactorPose3(currentPoseKey, Pose3(currentPoseGlobal.rotation, GPS_data(measurementIndex).Position), ...
noiseModel.Diagonal.Precisions([ zeros(3,1); 1./(GPS_data(measurementIndex).PositionSigma).^2*ones(3,1) ])));
end
%% Create VO factor
if type == 1
VOpose = VO_data(measurementIndex).RelativePose;
newFactors.add(BetweenFactorPose3(VOPoseKeys(end-1), VOPoseKeys(end), VOpose, noiseModelVO));
end
% Add initial value
%newValues.insert(currentPoseKey, Pose3(currentPoseGlobal.rotation, GPS_data(measurementIndex).Position));
newValues.insert(currentPoseKey,currentPoseGlobal);
newValues.insert(currentVelKey, currentVelocityGlobal);
newValues.insert(currentBiasKey, currentBias);
% Update solver
% =======================================================================
isam.update(newFactors, newValues);
newFactors = NonlinearFactorGraph;
newValues = Values;
if rem(measurementIndex,20)==0
cla;
plot3DTrajectory(isam.calculateEstimate, 'g-');
axis equal
drawnow;
end
% =======================================================================
currentPoseGlobal = isam.calculateEstimate(currentPoseKey);
currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
currentBias = isam.calculateEstimate(currentBiasKey);
end
end % end main loop