inserted figures
parent
e9ea8b426a
commit
d4447cbe48
|
@ -348,7 +348,7 @@ Aff(2),6
|
|||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
SL(3),8
|
||||
|
@ -390,36 +390,6 @@ SL(3),8
|
|||
Motivation: Rigid Motions in the Plane
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement h
|
||||
wide false
|
||||
sideways false
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
IMAGINE A FIGURE HERE
|
||||
\begin_inset Caption
|
||||
|
||||
\begin_layout Plain Layout
|
||||
(a) A robot translating.
|
||||
(b) A robot rotating.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
We will start with a small example of a robot moving in a plane, parameterized
|
||||
by a
|
||||
|
@ -480,6 +450,7 @@ where
|
|||
\end_inset
|
||||
|
||||
in counterclockwise direction.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -490,7 +461,13 @@ sideways false
|
|||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
IMAGINE A FIGURE HERE
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename images/circular.pdf
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
@ -520,7 +497,7 @@ The reason is that, if we move the robot a tiny bit according to the velocity
|
|||
\begin_inset Formula $(v_{x},\, v_{y},\,\omega)$
|
||||
\end_inset
|
||||
|
||||
, we do have to first order
|
||||
, we have (to first order)
|
||||
\begin_inset Formula \[
|
||||
(x_{t+\delta},\, y_{t+\delta},\,\theta_{t+\delta})=(x_{0}+v_{x}\delta,\, y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)\]
|
||||
|
||||
|
@ -608,7 +585,13 @@ sideways false
|
|||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
IMAGINE A FIGURE HERE
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename images/n-steps.pdf
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
@ -718,18 +701,13 @@ T(t)=\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}\]
|
|||
For real numbers, this series is familiar and is actually a way to compute
|
||||
the exponential function:
|
||||
\begin_inset Formula \[
|
||||
e^{x}=\lim_{n\rightarrow\infty}\left(I+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}\]
|
||||
e^{x}=\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The series can be similarly defined for square matrices,
|
||||
\begin_inset Formula \[
|
||||
e^{A}=\lim_{n\rightarrow\infty}\left(I+\frac{A}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{A^{k}}{k!}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Our final result is that we can write the motion of a robot along a circular
|
||||
trajectory, resulting from the 2D twist
|
||||
The series can be similarly defined for square matrices,and the final result
|
||||
is that we can write the motion of a robot along a circular trajectory,
|
||||
resulting from the 2D twist
|
||||
\begin_inset Formula $\xi=(v,\omega)$
|
||||
\end_inset
|
||||
|
||||
|
@ -757,7 +735,7 @@ exponential map.
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The above has all elemtns of Lie group theory.
|
||||
The above has all elements of Lie group theory.
|
||||
We call the space of 2D rigid transformations, along with the composition
|
||||
operation, the
|
||||
\emph on
|
||||
|
@ -1212,7 +1190,7 @@ The Lie group
|
|||
|
||||
|
||||
\begin_inset Formula \[
|
||||
\hat{}:\theta\rightarrow\that=\skew{\theta}\]
|
||||
\hat{}:\omega\rightarrow\what=\skew{\omega}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -1256,13 +1234,46 @@ which maps the angle
|
|||
|
||||
The exponential map can be computed in closed form as
|
||||
\begin_inset Formula \[
|
||||
R=e^{\skew{\theta}}=\left[\begin{array}{cc}
|
||||
R=e^{\skew{\omega t}}=e^{\skew{\theta}}=\left[\begin{array}{cc}
|
||||
\cos\theta & -\sin\theta\\
|
||||
\sin\theta & \cos\theta\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
This can be proven
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "Hall00book"
|
||||
|
||||
\end_inset
|
||||
|
||||
by realizing
|
||||
\begin_inset Formula $\skew 1$
|
||||
\end_inset
|
||||
|
||||
is diagonizable with eigenvalues
|
||||
\begin_inset Formula $-i$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
, and eigenvectors
|
||||
\begin_inset Formula $\left[\begin{array}{c}
|
||||
1\\
|
||||
i\end{array}\right]$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\left[\begin{array}{c}
|
||||
i\\
|
||||
1\end{array}\right]$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Readers familiar with projective geometry will recognize these as the circular
|
||||
points when promoted to homogeneous coordinates.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -1336,13 +1347,13 @@ We would now like to know what an incremental rotation parameterized by
|
|||
|
||||
would do:
|
||||
\begin_inset Formula \[
|
||||
q(\text{\theta})=Re^{\skew{\theta}}p\]
|
||||
q(\text{\omega t})=Re^{\skew{\omega t}}p\]
|
||||
|
||||
\end_inset
|
||||
|
||||
hence the derivative is:
|
||||
\begin_inset Formula \[
|
||||
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\theta}}p\right)=R\deriv{}{\omega}\left(\skew{\theta}p\right)=RH_{p}\]
|
||||
\deriv{q(\omega t)}t=R\deriv{}t\left(e^{\skew{\omega t}}p\right)=R\deriv{}t\left(\skew{\omega t}p\right)=RH_{p}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -2872,7 +2883,7 @@ Applying a homography is then a tensor contraction
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
|
|
Binary file not shown.
Binary file not shown.
182
doc/math.lyx
182
doc/math.lyx
|
@ -54,7 +54,20 @@ Geometry Derivatives and Other Hairy Math
|
|||
Frank Dellaert
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Box Frameless
|
||||
position "t"
|
||||
hor_pos "c"
|
||||
has_inner_box 1
|
||||
inner_pos "t"
|
||||
use_parbox 0
|
||||
width "100col%"
|
||||
special "none"
|
||||
height "1in"
|
||||
height_special "totalheight"
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
|
@ -67,7 +80,7 @@ Derivatives
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}}
|
||||
{\frac{\partial#1}{\partial#2}}
|
||||
|
@ -88,7 +101,7 @@ Derivatives
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
|
@ -101,7 +114,7 @@ Lie Groups
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\xhat}{\hat{x}}
|
||||
{\hat{x}}
|
||||
|
@ -122,7 +135,7 @@ Lie Groups
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\define}{\stackrel{\Delta}{=}}
|
||||
{\stackrel{\Delta}{=}}
|
||||
|
@ -143,7 +156,7 @@ Lie Groups
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
|
@ -156,7 +169,7 @@ SO(2)
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}}
|
||||
{\mathfrak{\mathbb{R}^{2}}}
|
||||
|
@ -189,7 +202,7 @@ SO(2)
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
|
@ -202,7 +215,7 @@ SE(2)
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\SEtwo}{SE(2)}
|
||||
{SE(2)}
|
||||
|
@ -217,7 +230,7 @@ SE(2)
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
|
@ -230,7 +243,7 @@ SO(3)
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rthree}{\mathfrak{\mathbb{R}^{3}}}
|
||||
{\mathfrak{\mathbb{R}^{3}}}
|
||||
|
@ -263,7 +276,7 @@ SO(3)
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Note Comment
|
||||
status open
|
||||
|
||||
|
@ -276,7 +289,7 @@ SE(3)
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}}
|
||||
{\mathfrak{\mathbb{R}^{6}}}
|
||||
|
@ -301,12 +314,121 @@ SE(3)
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Derivatives of Lie Group Mappings
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
New
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The following is relevant
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "page 45"
|
||||
key "Hall00book"
|
||||
|
||||
\end_inset
|
||||
|
||||
: suppose that
|
||||
\begin_inset Formula $\Phi:G\rightarrow H$
|
||||
\end_inset
|
||||
|
||||
is a a mapping (Lie group homomorphism).
|
||||
Then there exists a unique linear map
|
||||
\begin_inset Formula $\phi:\gg\rightarrow\mathfrak{h}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula \[
|
||||
\phi(\xhat)\define\lim_{t\rightarrow0}\frac{d}{dt}\Phi\left(e^{t\xhat}\right)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
such that
|
||||
\end_layout
|
||||
|
||||
\begin_layout Enumerate
|
||||
\begin_inset Formula $\Phi\left(e^{\xhat}\right)=e^{\phi\left(\xhat\right)}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Enumerate
|
||||
\begin_inset Formula $\phi\left(T\xhat T^{-1}\right)=\Phi(T)\phi(\xhat)\Phi(T^{-1})$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Enumerate
|
||||
\begin_inset Formula $\phi\left([\xhat,\yhat]\right)=\left[\phi(\xhat),\phi(\yhat)\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In other words, the map
|
||||
\begin_inset Formula $\phi$
|
||||
\end_inset
|
||||
|
||||
is the derivative of
|
||||
\begin_inset Formula $\Phi$
|
||||
\end_inset
|
||||
|
||||
at the identity.
|
||||
It suffices to compute
|
||||
\begin_inset Formula $\phi$
|
||||
\end_inset
|
||||
|
||||
for a basis of
|
||||
\begin_inset Formula $\gg$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Since
|
||||
\begin_inset Formula \[
|
||||
e^{-\xhat}=\left(e^{-\xhat}\right)^{-1}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
clearly
|
||||
\begin_inset Formula $\phi(\xhat)=-\xhat$
|
||||
\end_inset
|
||||
|
||||
for the inverse mapping.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Let us define two mappings
|
||||
\begin_inset Formula \[
|
||||
\Phi_{1}(A)=AB\mbox{ and }\Phi_{2}(B)=AB\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Then
|
||||
\begin_inset Formula \[
|
||||
\phi_{1}(\xhat)=\lim_{t\rightarrow0}\frac{d}{dt}\Phi_{1}\left(e^{t\xhat}B\right)=\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Old
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The derivatives for
|
||||
\emph on
|
||||
|
@ -962,11 +1084,11 @@ We would now like to know what an incremental rotation parameterized by
|
|||
|
||||
would do:
|
||||
\begin_inset Formula \[
|
||||
q(\text{\theta})=Re^{\skew{\theta}}p\]
|
||||
q(\text{\omega t})=Re^{\skew{\omega t}}p\]
|
||||
|
||||
\end_inset
|
||||
|
||||
hence the derivative (following the exposition in Section
|
||||
The derivative is (following the exposition in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Derivatives-of-Actions"
|
||||
|
@ -975,7 +1097,7 @@ reference "sec:Derivatives-of-Actions"
|
|||
|
||||
):
|
||||
\begin_inset Formula \[
|
||||
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\theta}}p\right)=R\deriv{}{\omega}\left(\skew{\theta}p\right)=RH_{p}\]
|
||||
\deriv{q(\omega t)}t=R\deriv{}t\left(e^{\skew{\omega t}}p\right)=R\deriv{}t\left(\skew{\omega t}p\right)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -1004,22 +1126,34 @@ cross product
|
|||
\begin_inset Formula \[
|
||||
\skew{\theta}p=\left[\begin{array}{c}
|
||||
-y\\
|
||||
x\end{array}\right]\theta=H_{p}\theta\]
|
||||
x\end{array}\right]\theta=\omega R_{pi/2}pt\]
|
||||
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $H_{p}=R_{pi/2}p$
|
||||
Hence, the final derivative of an action in its first argument is
|
||||
\begin_inset Formula \[
|
||||
\deriv{q(\omega t)}{\omega t}=\omega RR_{pi/2}p=\omega R_{pi/2}Rp=\omega R_{pi/2}q\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Really need to think of relationship
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $t$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Hence, the final derivative of an action in its first argument is
|
||||
\begin_inset Formula \[
|
||||
\deriv{q(\theta)}{\theta}=RH_{p}=RR_{pi/2}p=R_{pi/2}Rp=R_{pi/2}q\]
|
||||
|
||||
We don't have a time
|
||||
\begin_inset Formula $t$
|
||||
\end_inset
|
||||
|
||||
|
||||
in our code.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
Loading…
Reference in New Issue