Merge branch 'support/2.4.0/mergeDevelop'

release/4.3a0
dellaert 2014-01-25 11:10:24 -05:00
commit d3a61a9bb6
15 changed files with 817 additions and 565 deletions

49
gtsam.h
View File

@ -563,6 +563,49 @@ virtual class Pose3 : gtsam::Value {
void serialize() const;
};
#include <gtsam/geometry/Sphere2.h>
virtual class Sphere2 : gtsam::Value {
// Standard Constructors
Sphere2();
Sphere2(const gtsam::Point3& pose);
// Testable
void print(string s) const;
bool equals(const gtsam::Sphere2& pose, double tol) const;
// Other functionality
Matrix basis() const;
Matrix skew() const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Sphere2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Sphere2& s) const;
};
#include <gtsam/geometry/EssentialMatrix.h>
virtual class EssentialMatrix : gtsam::Value {
// Standard Constructors
EssentialMatrix(const gtsam::Rot3& aRb, const gtsam::Sphere2& aTb);
// Testable
void print(string s) const;
bool equals(const gtsam::EssentialMatrix& pose, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::EssentialMatrix retract(Vector v) const;
Vector localCoordinates(const gtsam::EssentialMatrix& s) const;
// Other methods:
gtsam::Rot3 rotation() const;
gtsam::Sphere2 direction() const;
Matrix matrix() const;
double error(Vector vA, Vector vB);
};
virtual class Cal3_S2 : gtsam::Value {
// Standard Constructors
Cal3_S2();
@ -2273,6 +2316,12 @@ virtual class PoseRotationPrior : gtsam::NoiseModelFactor {
typedef gtsam::PoseRotationPrior<gtsam::Pose2> PoseRotationPrior2D;
typedef gtsam::PoseRotationPrior<gtsam::Pose3> PoseRotationPrior3D;
#include <gtsam/slam/EssentialMatrixFactor.h>
virtual class EssentialMatrixFactor : gtsam::NoiseModelFactor {
EssentialMatrixFactor(size_t key, const gtsam::Point2& pA, const gtsam::Point2& pB,
const gtsam::noiseModel::Base* noiseModel);
};
#include <gtsam/slam/dataset.h>
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise, bool smart);

View File

@ -81,6 +81,17 @@ Sphere2 Rot3::rotate(const Sphere2& p,
return q;
}
/* ************************************************************************* */
Sphere2 Rot3::unrotate(const Sphere2& p,
boost::optional<Matrix&> HR, boost::optional<Matrix&> Hp) const {
Sphere2 q = unrotate(p.point3(Hp));
if (Hp)
(*Hp) = q.basis().transpose() * matrix().transpose () * (*Hp);
if (HR)
(*HR) = q.basis().transpose() * q.skew();
return q;
}
/* ************************************************************************* */
Sphere2 Rot3::operator*(const Sphere2& p) const {
return rotate(p);

View File

@ -331,6 +331,10 @@ namespace gtsam {
Sphere2 rotate(const Sphere2& p, boost::optional<Matrix&> HR = boost::none,
boost::optional<Matrix&> Hp = boost::none) const;
/// unrotate 3D direction from world frame to rotated coordinate frame
Sphere2 unrotate(const Sphere2& p, boost::optional<Matrix&> HR = boost::none,
boost::optional<Matrix&> Hp = boost::none) const;
/// rotate 3D direction from rotated coordinate frame to world frame
Sphere2 operator*(const Sphere2& p) const;

View File

@ -62,11 +62,6 @@ namespace gtsam {
/* ************************************************************************* */
Rot3::Rot3(const Quaternion& q) : quaternion_(q) {}
/* ************************************************************************* */
void Rot3::print(const std::string& s) const {
gtsam::print((Matrix)matrix(), s);
}
/* ************************************************************************* */
Rot3 Rot3::Rx(double t) { return Quaternion(Eigen::AngleAxisd(t, Eigen::Vector3d::UnitX())); }

View File

@ -14,6 +14,7 @@
* @date Feb 02, 2011
* @author Can Erdogan
* @author Frank Dellaert
* @author Alex Trevor
* @brief The Sphere2 class - basically a point on a unit sphere
*/
@ -113,7 +114,7 @@ double Sphere2::distance(const Sphere2& q, boost::optional<Matrix&> H) const {
}
/* ************************************************************************* */
Sphere2 Sphere2::retract(const Vector& v) const {
Sphere2 Sphere2::retract(const Vector& v, Sphere2::CoordinatesMode mode) const {
// Get the vector form of the point and the basis matrix
Vector p = Point3::Logmap(p_);
@ -121,18 +122,54 @@ Sphere2 Sphere2::retract(const Vector& v) const {
// Compute the 3D xi_hat vector
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
Vector newPoint = p + xi_hat;
if (mode == Sphere2::EXPMAP) {
double xi_hat_norm = xi_hat.norm();
// Avoid nan
if (xi_hat_norm == 0.0) {
if (v.norm () == 0.0)
return Sphere2 (point3 ());
else
return Sphere2 (-point3 ());
}
Vector exp_p_xi_hat = cos (xi_hat_norm) * p + sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
return Sphere2(exp_p_xi_hat);
} else if (mode == Sphere2::RENORM) {
// Project onto the manifold, i.e. the closest point on the circle to the new location;
// same as putting it onto the unit circle
Vector newPoint = p + xi_hat;
Vector projected = newPoint / newPoint.norm();
return Sphere2(Point3::Expmap(projected));
} else {
assert (false);
exit (1);
}
}
/* ************************************************************************* */
Vector Sphere2::localCoordinates(const Sphere2& y) const {
Vector Sphere2::localCoordinates(const Sphere2& y, Sphere2::CoordinatesMode mode) const {
if (mode == Sphere2::EXPMAP) {
Matrix B = basis();
Vector p = Point3::Logmap(p_);
Vector q = Point3::Logmap(y.p_);
double theta = acos(p.transpose() * q);
// the below will be nan if theta == 0.0
if (p == q)
return (Vector (2) << 0, 0);
else if (p == (Vector)-q)
return (Vector (2) << M_PI, 0);
Vector result_hat = (theta / sin(theta)) * (q - p * cos(theta));
Vector result = B.transpose() * result_hat;
return result;
} else if (mode == Sphere2::RENORM) {
// Make sure that the angle different between x and y is less than 90. Otherwise,
// we can project x + xi_hat from the tangent space at x to y.
assert(y.p_.dot(p_) > 0.0 && "Can not retract from x to y.");
@ -150,6 +187,10 @@ Vector Sphere2::localCoordinates(const Sphere2& y) const {
Matrix coeffs = (B.transpose() * q) / alpha;
Vector result = Vector_(2, coeffs(0, 0), coeffs(1, 0));
return result;
} else {
assert (false);
exit (1);
}
}
/* ************************************************************************* */

View File

@ -14,6 +14,7 @@
* @date Feb 02, 2011
* @author Can Erdogan
* @author Frank Dellaert
* @author Alex Trevor
* @brief Develop a Sphere2 class - basically a point on a unit sphere
*/
@ -22,6 +23,10 @@
#include <gtsam/geometry/Point3.h>
#include <gtsam/base/DerivedValue.h>
#ifndef SPHERE2_DEFAULT_COORDINATES_MODE
#define SPHERE2_DEFAULT_COORDINATES_MODE Sphere2::RENORM
#endif
// (Cumbersome) forward declaration for random generator
namespace boost {
namespace random {
@ -106,6 +111,13 @@ public:
return p_;
}
/// Return unit-norm Vector
Vector unitVector(boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = basis();
return (p_.vector ());
}
/// Signed, vector-valued error between two directions
Vector error(const Sphere2& q,
boost::optional<Matrix&> H = boost::none) const;
@ -129,11 +141,16 @@ public:
return 2;
}
enum CoordinatesMode {
EXPMAP, ///< Use the exponential map to retract
RENORM ///< Retract with vector addtion and renormalize.
};
/// The retract function
Sphere2 retract(const Vector& v) const;
Sphere2 retract(const Vector& v, Sphere2::CoordinatesMode mode = SPHERE2_DEFAULT_COORDINATES_MODE) const;
/// The local coordinates function
Vector localCoordinates(const Sphere2& s) const;
Vector localCoordinates(const Sphere2& s, Sphere2::CoordinatesMode mode = SPHERE2_DEFAULT_COORDINATES_MODE) const;
/// @}
};

View File

@ -89,10 +89,7 @@ TEST (EssentialMatrix, rotate) {
// Derivatives
Matrix actH1, actH2;
try {
bodyE.rotate(cRb, actH1, actH2);
} catch (exception e) {
} // avoid exception
try { bodyE.rotate(cRb, actH1, actH2);} catch(exception e) {} // avoid exception
Matrix expH1 = numericalDerivative21(rotate_, bodyE, cRb), //
expH2 = numericalDerivative22(rotate_, bodyE, cRb);
EXPECT(assert_equal(expH1, actH1, 1e-8));

View File

@ -13,6 +13,8 @@
* @file testSphere2.cpp
* @date Feb 03, 2012
* @author Can Erdogan
* @author Frank Dellaert
* @author Alex Trevor
* @brief Tests the Sphere2 class
*/
@ -76,10 +78,35 @@ TEST(Sphere2, rotate) {
}
}
//*******************************************************************************
static Sphere2 unrotate_(const Rot3& R, const Sphere2& p) {
return R.unrotate (p);
}
TEST(Sphere2, unrotate) {
Rot3 R = Rot3::yaw(-M_PI/4.0);
Sphere2 p(1, 0, 0);
Sphere2 expected = Sphere2(1, 1, 0);
Sphere2 actual = R.unrotate (p);
EXPECT(assert_equal(expected, actual, 1e-8));
Matrix actualH, expectedH;
// Use numerical derivatives to calculate the expected Jacobian
{
expectedH = numericalDerivative21(unrotate_, R, p);
R.unrotate(p, actualH, boost::none);
EXPECT(assert_equal(expectedH, actualH, 1e-9));
}
{
expectedH = numericalDerivative22(unrotate_, R, p);
R.unrotate(p, boost::none, actualH);
EXPECT(assert_equal(expectedH, actualH, 1e-9));
}
}
//*******************************************************************************
TEST(Sphere2, error) {
Sphere2 p(1, 0, 0), q = p.retract((Vector(2) << 0.5, 0)), //
r = p.retract((Vector(2) << 0.8, 0));
Sphere2 p(1, 0, 0), q = p.retract((Vector(2) << 0.5, 0), Sphere2::RENORM), //
r = p.retract((Vector(2) << 0.8, 0), Sphere2::RENORM);
EXPECT(assert_equal((Vector(2) << 0, 0), p.error(p), 1e-8));
EXPECT(assert_equal((Vector(2) << 0.447214, 0), p.error(q), 1e-5));
EXPECT(assert_equal((Vector(2) << 0.624695, 0), p.error(r), 1e-5));
@ -102,8 +129,8 @@ TEST(Sphere2, error) {
//*******************************************************************************
TEST(Sphere2, distance) {
Sphere2 p(1, 0, 0), q = p.retract((Vector(2) << 0.5, 0)), //
r = p.retract((Vector(2) << 0.8, 0));
Sphere2 p(1, 0, 0), q = p.retract((Vector(2) << 0.5, 0), Sphere2::RENORM), //
r = p.retract((Vector(2) << 0.8, 0), Sphere2::RENORM);
EXPECT_DOUBLES_EQUAL(0, p.distance(p), 1e-8);
EXPECT_DOUBLES_EQUAL(0.44721359549995798, p.distance(q), 1e-8);
EXPECT_DOUBLES_EQUAL(0.6246950475544244, p.distance(r), 1e-8);
@ -147,9 +174,20 @@ TEST(Sphere2, retract) {
Vector v(2);
v << 0.5, 0;
Sphere2 expected(Point3(1, 0, 0.5));
Sphere2 actual = p.retract(v);
Sphere2 actual = p.retract(v, Sphere2::RENORM);
EXPECT(assert_equal(expected, actual, 1e-8));
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
EXPECT(assert_equal(v, p.localCoordinates(actual, Sphere2::RENORM), 1e-8));
}
//*******************************************************************************
TEST(Sphere2, retract_expmap) {
Sphere2 p;
Vector v(2);
v << (M_PI/2.0), 0;
Sphere2 expected(Point3(0, 0, 1));
Sphere2 actual = p.retract(v, Sphere2::EXPMAP);
EXPECT(assert_equal(expected, actual, 1e-8));
EXPECT(assert_equal(v, p.localCoordinates(actual, Sphere2::EXPMAP), 1e-8));
}
//*******************************************************************************
@ -199,6 +237,39 @@ TEST(Sphere2, localCoordinates_retract) {
}
}
//*******************************************************************************
// Let x and y be two Sphere2's.
// The equality x.localCoordinates(x.retract(v)) == v should hold.
TEST(Sphere2, localCoordinates_retract_expmap) {
size_t numIterations = 10000;
Vector minSphereLimit = Vector_(3, -1.0, -1.0, -1.0), maxSphereLimit =
Vector_(3, 1.0, 1.0, 1.0);
Vector minXiLimit = Vector_(2, -M_PI, -M_PI), maxXiLimit = Vector_(2, M_PI, M_PI);
for (size_t i = 0; i < numIterations; i++) {
// Sleep for the random number generator (TODO?: Better create all of them first).
sleep(0);
// Create the two Sphere2s.
// Unlike the above case, we can use any two sphers.
Sphere2 s1(Point3(randomVector(minSphereLimit, maxSphereLimit)));
// Sphere2 s2 (Point3(randomVector(minSphereLimit, maxSphereLimit)));
Vector v12 = randomVector(minXiLimit, maxXiLimit);
// Magnitude of the rotation can be at most pi
if (v12.norm () > M_PI)
v12 = v12 / M_PI;
Sphere2 s2 = s1.retract(v12);
// Check if the local coordinates and retract return the same results.
Vector actual_v12 = s1.localCoordinates(s2);
EXPECT(assert_equal(v12, actual_v12, 1e-3));
Sphere2 actual_s2 = s1.retract(actual_v12);
EXPECT(assert_equal(s2, actual_s2, 1e-3));
}
}
//*******************************************************************************
//TEST( Pose2, between )
//{

10
matlab/+gtsam/EXPECT.m Normal file
View File

@ -0,0 +1,10 @@
function EXPECT(name,assertion)
% EXPECT throw a warning if an assertion fails
%
% EXPECT(name,assertion)
% - name of test
% - assertion
if (assertion~=1)
warning(['EXPECT ' name ' fails']);
end

View File

@ -1,16 +1,17 @@
function covarianceEllipse(x,P,color)
function covarianceEllipse(x,P,color, k)
% covarianceEllipse plots a Gaussian as an uncertainty ellipse
% Based on Maybeck Vol 1, page 366
% k=2.296 corresponds to 1 std, 68.26% of all probability
% k=11.82 corresponds to 3 std, 99.74% of all probability
%
% covarianceEllipse(x,P,color)
% covarianceEllipse(x,P,color,k)
% it is assumed x and y are the first two components of state x
% k is scaling for std deviations, defaults to 1 std
[e,s] = eig(P(1:2,1:2));
s1 = s(1,1);
s2 = s(2,2);
k = 2.296;
if nargin<4, k = 2.296; end;
[ex,ey] = ellipse( sqrt(s1*k)*e(:,1), sqrt(s2*k)*e(:,2), x(1:2) );
line(ex,ey,'color',color);

View File

@ -0,0 +1,56 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010-2013, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief Monocular VO Example with 5 landmarks and two cameras
% @author Frank Dellaert
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% import
import gtsam.*
%% Create two cameras and corresponding essential matrix E
aRb = Rot3.Yaw(pi/2);
aTb = Point3 (0.1, 0, 0);
identity=Pose3;
aPb = Pose3(aRb, aTb);
cameraA = CalibratedCamera(identity);
cameraB = CalibratedCamera(aPb);
%% Create 5 points
P = { Point3(0, 0, 1), Point3(-0.1, 0, 1), Point3(0.1, 0, 1), Point3(0, 0.5, 0.5), Point3(0, -0.5, 0.5) };
%% Project points in both cameras
for i=1:5
pA{i}= cameraA.project(P{i});
pB{i}= cameraB.project(P{i});
end
%% We start with a factor graph and add epipolar constraints to it
% Noise sigma is 1cm, assuming metric measurements
graph = NonlinearFactorGraph;
model = noiseModel.Isotropic.Sigma(1,0.01);
for i=1:5
graph.add(EssentialMatrixFactor(1, pA{i}, pB{i}, model));
end
%% Create initial estimate
initial = Values;
trueE = EssentialMatrix(aRb,Sphere2(aTb));
initialE = trueE.retract([0.1, -0.1, 0.1, 0.1, -0.1]');
initial.insert(1, initialE);
%% Optimize
parameters = LevenbergMarquardtParams;
% parameters.setVerbosity('ERROR');
optimizer = LevenbergMarquardtOptimizer(graph, initial, parameters);
result = optimizer.optimize();
%% Print result (as essentialMatrix) and error
error = graph.error(result)
E = result.at(1)

View File

@ -13,7 +13,7 @@
import gtsam.*
%% Find data file
datafile = findExampleDataFile('w100-odom.graph');
datafile = findExampleDataFile('w100.graph');
%% Initialize graph, initial estimate, and odometry noise
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);

View File

@ -33,7 +33,7 @@ graph.add(NonlinearEqualityPose3(x1, first_pose));
%% Create realistic calibration and measurement noise model
% format: fx fy skew cx cy baseline
K = Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2);
stereo_model = noiseModel.Diagonal.Sigmas([1.0; 1.0; 1.0]);
stereo_model = noiseModel.Isotropic.Sigma(3,1);
%% Add measurements
% pose 1