Appropriate dt for integration
parent
15dfd932f1
commit
d39759d8c8
|
@ -36,20 +36,19 @@ class ImuFactorExample(object):
|
||||||
W = np.array([0, -w, 0])
|
W = np.array([0, -w, 0])
|
||||||
V = np.array([v, 0, 0])
|
V = np.array([v, 0, 0])
|
||||||
self.scenario = gtsam.ConstantTwistScenario(W, V)
|
self.scenario = gtsam.ConstantTwistScenario(W, V)
|
||||||
self.dt = 0.25
|
self.dt = 1e-2
|
||||||
self.realTimeFactor = 10.0
|
|
||||||
|
|
||||||
# Calculate time to do 1 loop
|
# Calculate time to do 1 loop
|
||||||
self.radius = v / w
|
self.radius = v / w
|
||||||
self.timeForOneLoop = 2 * math.pi / w
|
self.timeForOneLoop = 2.0 * math.pi / w
|
||||||
self.labels = list('xyz')
|
self.labels = list('xyz')
|
||||||
self.colors = list('rgb')
|
self.colors = list('rgb')
|
||||||
|
|
||||||
# Create runner
|
# Create runner
|
||||||
dt = 0.1
|
|
||||||
self.g = 10 # simple gravity constant
|
self.g = 10 # simple gravity constant
|
||||||
self.params = self.defaultParams(self.g)
|
self.params = self.defaultParams(self.g)
|
||||||
self.runner = gtsam.ScenarioRunner(gtsam.ScenarioPointer(self.scenario), self.params, dt)
|
ptr = gtsam.ScenarioPointer(self.scenario)
|
||||||
|
self.runner = gtsam.ScenarioRunner(ptr, self.params, self.dt)
|
||||||
self.estimatedBias = gtsam.ConstantBias()
|
self.estimatedBias = gtsam.ConstantBias()
|
||||||
|
|
||||||
def plot(self, t, measuredOmega, measuredAcc):
|
def plot(self, t, measuredOmega, measuredAcc):
|
||||||
|
@ -80,10 +79,10 @@ class ImuFactorExample(object):
|
||||||
|
|
||||||
# plot ground truth pose, as well as prediction from integrated IMU measurements
|
# plot ground truth pose, as well as prediction from integrated IMU measurements
|
||||||
actualPose = self.scenario.pose(t)
|
actualPose = self.scenario.pose(t)
|
||||||
plotPose3(4, actualPose, 1.0)
|
plotPose3(4, actualPose, 0.3)
|
||||||
pim = self.runner.integrate(t, self.estimatedBias, False)
|
pim = self.runner.integrate(t, self.estimatedBias, False)
|
||||||
predictedNavState = self.runner.predict(pim, self.estimatedBias)
|
predictedNavState = self.runner.predict(pim, self.estimatedBias)
|
||||||
plotPose3(4, predictedNavState.pose(), 1.0)
|
plotPose3(4, predictedNavState.pose(), 0.1)
|
||||||
ax = plt.gca()
|
ax = plt.gca()
|
||||||
ax.set_xlim3d(-self.radius, self.radius)
|
ax.set_xlim3d(-self.radius, self.radius)
|
||||||
ax.set_ylim3d(-self.radius, self.radius)
|
ax.set_ylim3d(-self.radius, self.radius)
|
||||||
|
@ -98,14 +97,16 @@ class ImuFactorExample(object):
|
||||||
plt.scatter(t, measuredAcc[i], color=color, marker='.')
|
plt.scatter(t, measuredAcc[i], color=color, marker='.')
|
||||||
plt.xlabel(label)
|
plt.xlabel(label)
|
||||||
|
|
||||||
plt.pause(self.dt / self.realTimeFactor)
|
plt.pause(0.01)
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
# simulate the loop up to the top
|
# simulate the loop up to the top
|
||||||
for t in np.arange(0, self.timeForOneLoop, self.dt):
|
T = self.timeForOneLoop
|
||||||
|
for i, t in enumerate(np.arange(0, T, self.dt)):
|
||||||
measuredOmega = self.runner.measuredAngularVelocity(t)
|
measuredOmega = self.runner.measuredAngularVelocity(t)
|
||||||
measuredAcc = self.runner.measuredSpecificForce(t)
|
measuredAcc = self.runner.measuredSpecificForce(t)
|
||||||
self.plot(t, measuredOmega, measuredAcc)
|
if i % 25 == 0:
|
||||||
|
self.plot(t, measuredOmega, measuredAcc)
|
||||||
|
|
||||||
plt.ioff()
|
plt.ioff()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
Loading…
Reference in New Issue