Added ground truth factor graph creation. Added OdometryExample3D as a modified version of OdometryExample for reference (can be removed later)
parent
93458eaeff
commit
d394ec5574
|
@ -0,0 +1,68 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
% Atlanta, Georgia 30332-0415
|
||||
% All Rights Reserved
|
||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
%
|
||||
% See LICENSE for the license information
|
||||
%
|
||||
% @brief Example of a simple 2D localization example
|
||||
% @author Frank Dellaert
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
% Copied Original file. Modified by David Jensen to use Pose3 instead of
|
||||
% Pose2. Everything else is the same.
|
||||
|
||||
import gtsam.*
|
||||
|
||||
%% Assumptions
|
||||
% - Robot poses are facing along the X axis (horizontal, to the right in 2D)
|
||||
% - The robot moves 2 meters each step
|
||||
% - The robot is on a grid, moving 2 meters each step
|
||||
|
||||
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
|
||||
graph = NonlinearFactorGraph;
|
||||
|
||||
%% Add a Gaussian prior on pose x_1
|
||||
priorMean = Pose3();%Pose3.Expmap([0.0; 0.0; 0.0; 0.0; 0.0; 0.0]); % prior mean is at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.3; 0.1; 0.1; 0.1]); % 30cm std on x,y, 0.1 rad on theta
|
||||
graph.add(PriorFactorPose3(1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add two odometry factors
|
||||
odometry = Pose3.Expmap([0.0; 0.0; 0.0; 2.0; 0.0; 0.0]); % create a measurement for both factors (the same in this case)
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.2; 0.1; 0.1; 0.1]); % 20cm std on x,y, 0.1 rad on theta
|
||||
graph.add(BetweenFactorPose3(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose3(2, 3, odometry, odometryNoise));
|
||||
|
||||
%% print
|
||||
graph.print(sprintf('\nFactor graph:\n'));
|
||||
|
||||
%% Initialize to noisy points
|
||||
initialEstimate = Values;
|
||||
%initialEstimate.insert(1, Pose3.Expmap([0.2; 0.1; 0.1; 0.5; 0.0; 0.0]));
|
||||
%initialEstimate.insert(2, Pose3.Expmap([-0.2; 0.1; -0.1; 2.3; 0.1; 0.1]));
|
||||
%initialEstimate.insert(3, Pose3.Expmap([0.1; -0.1; 0.1; 4.1; 0.1; -0.1]));
|
||||
%initialEstimate.print(sprintf('\nInitial estimate:\n '));
|
||||
|
||||
for i=1:3
|
||||
deltaPosition = 0.5*rand(3,1) + [1;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
|
||||
deltaRotation = 0.1*rand(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
|
||||
deltaPose = Pose3.Expmap([deltaRotation; deltaPosition]);
|
||||
currentPose = currentPose.compose(deltaPose);
|
||||
initialEstimate.insert(i, currentPose);
|
||||
end
|
||||
|
||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
|
||||
result = optimizer.optimizeSafely();
|
||||
result.print(sprintf('\nFinal result:\n '));
|
||||
|
||||
%% Plot trajectory and covariance ellipses
|
||||
cla;
|
||||
hold on;
|
||||
|
||||
plot3DTrajectory(result, [], Marginals(graph, result));
|
||||
|
||||
axis([-0.6 4.8 -1 1])
|
||||
axis equal
|
||||
view(2)
|
|
@ -1,3 +1,5 @@
|
|||
import gtsam.*;
|
||||
|
||||
% Test GTSAM covariances on a graph with betweenFactors
|
||||
|
||||
clc
|
||||
|
@ -5,26 +7,56 @@ clear all
|
|||
close all
|
||||
|
||||
%% Create ground truth trajectory
|
||||
trajectoryLength = 100;
|
||||
trajectoryLength = 5;
|
||||
|
||||
% possibly create random trajectory
|
||||
currentPoseKey = symbol('x', 0);
|
||||
currentPose = Pose3;
|
||||
gtValues = Values;
|
||||
gtValues.insert(currentPoseKey, currentPose);
|
||||
gtGraph = NonlinearFactorGraph;
|
||||
gtNoise = noiseModel.Diagonal.Sigmas([0.1; 0.1; 0.1; 0.05; 0.05; 0.05]); % Noise for GT measurements
|
||||
|
||||
for i=1:trajectoryLength
|
||||
currentPoseKey = symbol('x', i);
|
||||
deltaPosition = % create random vector with mean [x 0 0]
|
||||
deltaRotation = % create random rotation with mean [0 0 0]
|
||||
deltaPose = Pose3(deltaRotation, Point3(deltaPosition));
|
||||
deltaPosition = 0.5*rand(3,1) + [1;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
|
||||
deltaRotation = 0.1*rand(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
|
||||
deltaPose = Pose3.Expmap([deltaRotation; deltaPosition]);
|
||||
deltaPoseNoise = gtNoise;
|
||||
|
||||
% "Deduce" ground truth measurements
|
||||
% deltaPose are the gt measurements - save them in some structure
|
||||
gtMeasurementPose(i) = deltaPose;
|
||||
currentPose = currentPose.compose(deltaPose);
|
||||
gtValues.insert(currentPoseKey, currentPose);
|
||||
|
||||
% Add the factor to the factor graph
|
||||
if(i == 1)
|
||||
gtGraph.add(PriorFactorPose3(currentPoseKey, deltaPose, deltaPoseNoise));
|
||||
else
|
||||
gtGraph.add(BetweenFactorPose3(previousPoseKey, currentPoseKey, deltaPose, deltaPoseNoise));
|
||||
end
|
||||
previousPoseKey = currentPoseKey;
|
||||
end
|
||||
|
||||
gtGraph.print(sprintf('\nGround Truth - Factor graph:\n'));
|
||||
gtValues.print(sprintf('\nGround Truth - Values:\n'));
|
||||
|
||||
%% Create gt graph (using between with ground truth measurements)
|
||||
% Optimize using Levenberg-Marquardt
|
||||
optimizer = LevenbergMarquardtOptimizer(gtGraph, gtValues);
|
||||
gtResult = optimizer.optimizeSafely();
|
||||
gtResult.print(sprintf('\nGround Truth - Final Result:\n'));
|
||||
|
||||
% Plot trajectory and covariance ellipses
|
||||
% Couldn't get this to work in the modified example (OdometryExample3D).
|
||||
% Something strange with 3D trajectories?
|
||||
cla;
|
||||
hold on;
|
||||
|
||||
plot3DTrajectory(gtResult, [], Marginals(gtGraph, gtResult));
|
||||
axis equal
|
||||
|
||||
% Compute covariances using gtGraph and gtValues (for visualization)
|
||||
|
||||
% decide measurement covariance
|
||||
|
|
Loading…
Reference in New Issue