Added ground truth factor graph creation. Added OdometryExample3D as a modified version of OdometryExample for reference (can be removed later)

release/4.3a0
djensen3 2014-04-04 17:00:20 -04:00
parent 93458eaeff
commit d394ec5574
2 changed files with 104 additions and 4 deletions

View File

@ -0,0 +1,68 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief Example of a simple 2D localization example
% @author Frank Dellaert
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copied Original file. Modified by David Jensen to use Pose3 instead of
% Pose2. Everything else is the same.
import gtsam.*
%% Assumptions
% - Robot poses are facing along the X axis (horizontal, to the right in 2D)
% - The robot moves 2 meters each step
% - The robot is on a grid, moving 2 meters each step
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
graph = NonlinearFactorGraph;
%% Add a Gaussian prior on pose x_1
priorMean = Pose3();%Pose3.Expmap([0.0; 0.0; 0.0; 0.0; 0.0; 0.0]); % prior mean is at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.3; 0.1; 0.1; 0.1]); % 30cm std on x,y, 0.1 rad on theta
graph.add(PriorFactorPose3(1, priorMean, priorNoise)); % add directly to graph
%% Add two odometry factors
odometry = Pose3.Expmap([0.0; 0.0; 0.0; 2.0; 0.0; 0.0]); % create a measurement for both factors (the same in this case)
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.2; 0.1; 0.1; 0.1]); % 20cm std on x,y, 0.1 rad on theta
graph.add(BetweenFactorPose3(1, 2, odometry, odometryNoise));
graph.add(BetweenFactorPose3(2, 3, odometry, odometryNoise));
%% print
graph.print(sprintf('\nFactor graph:\n'));
%% Initialize to noisy points
initialEstimate = Values;
%initialEstimate.insert(1, Pose3.Expmap([0.2; 0.1; 0.1; 0.5; 0.0; 0.0]));
%initialEstimate.insert(2, Pose3.Expmap([-0.2; 0.1; -0.1; 2.3; 0.1; 0.1]));
%initialEstimate.insert(3, Pose3.Expmap([0.1; -0.1; 0.1; 4.1; 0.1; -0.1]));
%initialEstimate.print(sprintf('\nInitial estimate:\n '));
for i=1:3
deltaPosition = 0.5*rand(3,1) + [1;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
deltaRotation = 0.1*rand(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
deltaPose = Pose3.Expmap([deltaRotation; deltaPosition]);
currentPose = currentPose.compose(deltaPose);
initialEstimate.insert(i, currentPose);
end
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
result = optimizer.optimizeSafely();
result.print(sprintf('\nFinal result:\n '));
%% Plot trajectory and covariance ellipses
cla;
hold on;
plot3DTrajectory(result, [], Marginals(graph, result));
axis([-0.6 4.8 -1 1])
axis equal
view(2)

View File

@ -1,3 +1,5 @@
import gtsam.*;
% Test GTSAM covariances on a graph with betweenFactors % Test GTSAM covariances on a graph with betweenFactors
clc clc
@ -5,26 +7,56 @@ clear all
close all close all
%% Create ground truth trajectory %% Create ground truth trajectory
trajectoryLength = 100; trajectoryLength = 5;
% possibly create random trajectory % possibly create random trajectory
currentPoseKey = symbol('x', 0); currentPoseKey = symbol('x', 0);
currentPose = Pose3; currentPose = Pose3;
gtValues = Values; gtValues = Values;
gtValues.insert(currentPoseKey, currentPose); gtValues.insert(currentPoseKey, currentPose);
gtGraph = NonlinearFactorGraph;
gtNoise = noiseModel.Diagonal.Sigmas([0.1; 0.1; 0.1; 0.05; 0.05; 0.05]); % Noise for GT measurements
for i=1:trajectoryLength for i=1:trajectoryLength
currentPoseKey = symbol('x', i); currentPoseKey = symbol('x', i);
deltaPosition = % create random vector with mean [x 0 0] deltaPosition = 0.5*rand(3,1) + [1;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
deltaRotation = % create random rotation with mean [0 0 0] deltaRotation = 0.1*rand(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
deltaPose = Pose3(deltaRotation, Point3(deltaPosition)); deltaPose = Pose3.Expmap([deltaRotation; deltaPosition]);
deltaPoseNoise = gtNoise;
% "Deduce" ground truth measurements % "Deduce" ground truth measurements
% deltaPose are the gt measurements - save them in some structure % deltaPose are the gt measurements - save them in some structure
gtMeasurementPose(i) = deltaPose;
currentPose = currentPose.compose(deltaPose); currentPose = currentPose.compose(deltaPose);
gtValues.insert(currentPoseKey, currentPose); gtValues.insert(currentPoseKey, currentPose);
% Add the factor to the factor graph
if(i == 1)
gtGraph.add(PriorFactorPose3(currentPoseKey, deltaPose, deltaPoseNoise));
else
gtGraph.add(BetweenFactorPose3(previousPoseKey, currentPoseKey, deltaPose, deltaPoseNoise));
end
previousPoseKey = currentPoseKey;
end end
gtGraph.print(sprintf('\nGround Truth - Factor graph:\n'));
gtValues.print(sprintf('\nGround Truth - Values:\n'));
%% Create gt graph (using between with ground truth measurements) %% Create gt graph (using between with ground truth measurements)
% Optimize using Levenberg-Marquardt
optimizer = LevenbergMarquardtOptimizer(gtGraph, gtValues);
gtResult = optimizer.optimizeSafely();
gtResult.print(sprintf('\nGround Truth - Final Result:\n'));
% Plot trajectory and covariance ellipses
% Couldn't get this to work in the modified example (OdometryExample3D).
% Something strange with 3D trajectories?
cla;
hold on;
plot3DTrajectory(gtResult, [], Marginals(gtGraph, gtResult));
axis equal
% Compute covariances using gtGraph and gtValues (for visualization) % Compute covariances using gtGraph and gtValues (for visualization)
% decide measurement covariance % decide measurement covariance