add new methods for HybridSmoother relinearization
parent
d27583ba92
commit
d2f13710d5
|
@ -291,4 +291,20 @@ HybridValues HybridSmoother::optimize() const {
|
|||
return HybridValues(continuous, mpe);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridSmoother::relinearize() {
|
||||
allFactors_ = allFactors_.restrict(fixedValues_);
|
||||
HybridGaussianFactorGraph::shared_ptr linearized =
|
||||
allFactors_.linearize(linearizationPoint_);
|
||||
HybridBayesNet::shared_ptr bayesNet = linearized->eliminateSequential();
|
||||
HybridValues delta = bayesNet->optimize();
|
||||
linearizationPoint_ = linearizationPoint_.retract(delta.continuous());
|
||||
reInitialize(*bayesNet);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values HybridSmoother::linearizationPoint() const {
|
||||
return linearizationPoint_;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -126,15 +126,12 @@ class GTSAM_EXPORT HybridSmoother {
|
|||
/// Optimize the hybrid Bayes Net, taking into accound fixed values.
|
||||
HybridValues optimize() const;
|
||||
|
||||
void relinearize() {
|
||||
allFactors_ = allFactors_.restrict(fixedValues_);
|
||||
HybridGaussianFactorGraph::shared_ptr linearized =
|
||||
allFactors_.linearize(linearizationPoint_);
|
||||
HybridBayesNet::shared_ptr bayesNet = linearized->eliminateSequential();
|
||||
HybridValues delta = bayesNet->optimize();
|
||||
linearizationPoint_ = linearizationPoint_.retract(delta.continuous());
|
||||
reInitialize(*bayesNet);
|
||||
}
|
||||
/// Relinearize the nonlinear factor graph
|
||||
/// with the latest linearization point.
|
||||
void relinearize();
|
||||
|
||||
/// Return the current linearization point.
|
||||
Values linearizationPoint() const;
|
||||
|
||||
private:
|
||||
/// Helper to compute the ordering if ordering is not given.
|
||||
|
|
|
@ -283,12 +283,15 @@ class HybridSmoother {
|
|||
void reInitialize(gtsam::HybridBayesNet& hybridBayesNet);
|
||||
|
||||
void update(
|
||||
const gtsam::HybridNonlinearFactorGraph& graph, const Values& initial,
|
||||
const gtsam::HybridNonlinearFactorGraph& graph,
|
||||
const gtsam::Values& initial,
|
||||
std::optional<size_t> maxNrLeaves = std::nullopt,
|
||||
const std::optional<gtsam::Ordering> given_ordering = std::nullopt);
|
||||
|
||||
void relinearize();
|
||||
|
||||
gtsam::Values linearizationPoint() const;
|
||||
|
||||
gtsam::Ordering getOrdering(const gtsam::HybridGaussianFactorGraph& factors,
|
||||
const gtsam::KeySet& newFactorKeys);
|
||||
|
||||
|
|
Loading…
Reference in New Issue