Inherit constructors for CameraSets to switch to initializer lists.

release/4.3a0
Frank Dellaert 2023-01-07 11:02:26 -08:00
parent c4fb764299
commit d2f0cf5cc7
2 changed files with 99 additions and 146 deletions

View File

@ -35,6 +35,7 @@ template<class CAMERA>
class CameraSet : public std::vector<CAMERA, Eigen::aligned_allocator<CAMERA> > { class CameraSet : public std::vector<CAMERA, Eigen::aligned_allocator<CAMERA> > {
protected: protected:
using Base = std::vector<CAMERA, typename Eigen::aligned_allocator<CAMERA>>;
/** /**
* 2D measurement and noise model for each of the m views * 2D measurement and noise model for each of the m views
@ -47,9 +48,7 @@ protected:
static const int ZDim = traits<Z>::dimension; ///< Measurement dimension static const int ZDim = traits<Z>::dimension; ///< Measurement dimension
/// Make a vector of re-projection errors /// Make a vector of re-projection errors
static Vector ErrorVector(const ZVector& predicted, static Vector ErrorVector(const ZVector& predicted, const ZVector& measured) {
const ZVector& measured) {
// Check size // Check size
size_t m = predicted.size(); size_t m = predicted.size();
if (measured.size() != m) if (measured.size() != m)
@ -59,7 +58,8 @@ protected:
Vector b(ZDim * m); Vector b(ZDim * m);
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) { for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
Vector bi = traits<Z>::Local(measured[i], predicted[i]); Vector bi = traits<Z>::Local(measured[i], predicted[i]);
if(ZDim==3 && std::isnan(bi(1))){ // if it is a stereo point and the right pixel is missing (nan) if (ZDim == 3 && std::isnan(bi(1))) { // if it is a stereo point and the
// right pixel is missing (nan)
bi(1) = 0; bi(1) = 0;
} }
b.segment<ZDim>(row) = bi; b.segment<ZDim>(row) = bi;
@ -68,6 +68,7 @@ protected:
} }
public: public:
using Base::Base; // Inherit the vector constructors
/// Destructor /// Destructor
virtual ~CameraSet() = default; virtual ~CameraSet() = default;
@ -83,8 +84,7 @@ public:
*/ */
virtual void print(const std::string& s = "") const { virtual void print(const std::string& s = "") const {
std::cout << s << "CameraSet, cameras = \n"; std::cout << s << "CameraSet, cameras = \n";
for (size_t k = 0; k < this->size(); ++k) for (size_t k = 0; k < this->size(); ++k) this->at(k).print(s);
this->at(k).print(s);
} }
/// equals /// equals

View File

@ -30,12 +30,8 @@
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/StereoFactor.h> #include <gtsam/slam/StereoFactor.h>
#include <boost/assign.hpp>
#include <boost/assign/std/vector.hpp>
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
using namespace boost::assign;
// Some common constants // Some common constants
@ -51,34 +47,34 @@ static const PinholeCamera<Cal3_S2> kCamera1(kPose1, *kSharedCal);
static const Pose3 kPose2 = kPose1 * Pose3(Rot3(), Point3(1, 0, 0)); static const Pose3 kPose2 = kPose1 * Pose3(Rot3(), Point3(1, 0, 0));
static const PinholeCamera<Cal3_S2> kCamera2(kPose2, *kSharedCal); static const PinholeCamera<Cal3_S2> kCamera2(kPose2, *kSharedCal);
// landmark ~5 meters infront of camera static const std::vector<Pose3> kPoses = {kPose1, kPose2};
// landmark ~5 meters in front of camera
static const Point3 kLandmark(5, 0.5, 1.2); static const Point3 kLandmark(5, 0.5, 1.2);
// 1. Project two landmarks into two cameras and triangulate // 1. Project two landmarks into two cameras and triangulate
static const Point2 kZ1 = kCamera1.project(kLandmark); static const Point2 kZ1 = kCamera1.project(kLandmark);
static const Point2 kZ2 = kCamera2.project(kLandmark); static const Point2 kZ2 = kCamera2.project(kLandmark);
static const Point2Vector kMeasurements{kZ1, kZ2};
//****************************************************************************** //******************************************************************************
// Simple test with a well-behaved two camera situation // Simple test with a well-behaved two camera situation
TEST(triangulation, twoPoses) { TEST(triangulation, twoPoses) {
vector<Pose3> poses; Point2Vector measurements = kMeasurements;
Point2Vector measurements;
poses += kPose1, kPose2;
measurements += kZ1, kZ2;
double rank_tol = 1e-9; double rank_tol = 1e-9;
// 1. Test simple DLT, perfect in no noise situation // 1. Test simple DLT, perfect in no noise situation
bool optimize = false; bool optimize = false;
boost::optional<Point3> actual1 = // boost::optional<Point3> actual1 = //
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, rank_tol, optimize); triangulatePoint3<Cal3_S2>(kPoses, kSharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(kLandmark, *actual1, 1e-7)); EXPECT(assert_equal(kLandmark, *actual1, 1e-7));
// 2. test with optimization on, same answer // 2. test with optimization on, same answer
optimize = true; optimize = true;
boost::optional<Point3> actual2 = // boost::optional<Point3> actual2 = //
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, rank_tol, optimize); triangulatePoint3<Cal3_S2>(kPoses, kSharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(kLandmark, *actual2, 1e-7)); EXPECT(assert_equal(kLandmark, *actual2, 1e-7));
// 3. Add some noise and try again: result should be ~ (4.995, // 3. Add some noise and try again: result should be ~ (4.995,
@ -87,13 +83,13 @@ TEST(triangulation, twoPoses) {
measurements.at(1) += Point2(-0.2, 0.3); measurements.at(1) += Point2(-0.2, 0.3);
optimize = false; optimize = false;
boost::optional<Point3> actual3 = // boost::optional<Point3> actual3 = //
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, rank_tol, optimize); triangulatePoint3<Cal3_S2>(kPoses, kSharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-4)); EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-4));
// 4. Now with optimization on // 4. Now with optimization on
optimize = true; optimize = true;
boost::optional<Point3> actual4 = // boost::optional<Point3> actual4 = //
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements, rank_tol, optimize); triangulatePoint3<Cal3_S2>(kPoses, kSharedCal, measurements, rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-4)); EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-4));
} }
@ -102,7 +98,7 @@ TEST(triangulation, twoCamerasUsingLOST) {
cameras.push_back(kCamera1); cameras.push_back(kCamera1);
cameras.push_back(kCamera2); cameras.push_back(kCamera2);
Point2Vector measurements = {kZ1, kZ2}; Point2Vector measurements = kMeasurements;
SharedNoiseModel measurementNoise = noiseModel::Isotropic::Sigma(2, 1e-4); SharedNoiseModel measurementNoise = noiseModel::Isotropic::Sigma(2, 1e-4);
double rank_tol = 1e-9; double rank_tol = 1e-9;
@ -175,25 +171,21 @@ TEST(triangulation, twoPosesCal3DS2) {
Point2 z1Distorted = camera1Distorted.project(kLandmark); Point2 z1Distorted = camera1Distorted.project(kLandmark);
Point2 z2Distorted = camera2Distorted.project(kLandmark); Point2 z2Distorted = camera2Distorted.project(kLandmark);
vector<Pose3> poses; Point2Vector measurements{z1Distorted, z2Distorted};
Point2Vector measurements;
poses += kPose1, kPose2;
measurements += z1Distorted, z2Distorted;
double rank_tol = 1e-9; double rank_tol = 1e-9;
// 1. Test simple DLT, perfect in no noise situation // 1. Test simple DLT, perfect in no noise situation
bool optimize = false; bool optimize = false;
boost::optional<Point3> actual1 = // boost::optional<Point3> actual1 = //
triangulatePoint3<Cal3DS2>(poses, sharedDistortedCal, measurements, triangulatePoint3<Cal3DS2>(kPoses, sharedDistortedCal, measurements,
rank_tol, optimize); rank_tol, optimize);
EXPECT(assert_equal(kLandmark, *actual1, 1e-7)); EXPECT(assert_equal(kLandmark, *actual1, 1e-7));
// 2. test with optimization on, same answer // 2. test with optimization on, same answer
optimize = true; optimize = true;
boost::optional<Point3> actual2 = // boost::optional<Point3> actual2 = //
triangulatePoint3<Cal3DS2>(poses, sharedDistortedCal, measurements, triangulatePoint3<Cal3DS2>(kPoses, sharedDistortedCal, measurements,
rank_tol, optimize); rank_tol, optimize);
EXPECT(assert_equal(kLandmark, *actual2, 1e-7)); EXPECT(assert_equal(kLandmark, *actual2, 1e-7));
@ -203,14 +195,14 @@ TEST(triangulation, twoPosesCal3DS2) {
measurements.at(1) += Point2(-0.2, 0.3); measurements.at(1) += Point2(-0.2, 0.3);
optimize = false; optimize = false;
boost::optional<Point3> actual3 = // boost::optional<Point3> actual3 = //
triangulatePoint3<Cal3DS2>(poses, sharedDistortedCal, measurements, triangulatePoint3<Cal3DS2>(kPoses, sharedDistortedCal, measurements,
rank_tol, optimize); rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-3)); EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-3));
// 4. Now with optimization on // 4. Now with optimization on
optimize = true; optimize = true;
boost::optional<Point3> actual4 = // boost::optional<Point3> actual4 = //
triangulatePoint3<Cal3DS2>(poses, sharedDistortedCal, measurements, triangulatePoint3<Cal3DS2>(kPoses, sharedDistortedCal, measurements,
rank_tol, optimize); rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-3)); EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-3));
} }
@ -232,25 +224,21 @@ TEST(triangulation, twoPosesFisheye) {
Point2 z1Distorted = camera1Distorted.project(kLandmark); Point2 z1Distorted = camera1Distorted.project(kLandmark);
Point2 z2Distorted = camera2Distorted.project(kLandmark); Point2 z2Distorted = camera2Distorted.project(kLandmark);
vector<Pose3> poses; Point2Vector measurements{z1Distorted, z2Distorted};
Point2Vector measurements;
poses += kPose1, kPose2;
measurements += z1Distorted, z2Distorted;
double rank_tol = 1e-9; double rank_tol = 1e-9;
// 1. Test simple DLT, perfect in no noise situation // 1. Test simple DLT, perfect in no noise situation
bool optimize = false; bool optimize = false;
boost::optional<Point3> actual1 = // boost::optional<Point3> actual1 = //
triangulatePoint3<Calibration>(poses, sharedDistortedCal, measurements, triangulatePoint3<Calibration>(kPoses, sharedDistortedCal, measurements,
rank_tol, optimize); rank_tol, optimize);
EXPECT(assert_equal(kLandmark, *actual1, 1e-7)); EXPECT(assert_equal(kLandmark, *actual1, 1e-7));
// 2. test with optimization on, same answer // 2. test with optimization on, same answer
optimize = true; optimize = true;
boost::optional<Point3> actual2 = // boost::optional<Point3> actual2 = //
triangulatePoint3<Calibration>(poses, sharedDistortedCal, measurements, triangulatePoint3<Calibration>(kPoses, sharedDistortedCal, measurements,
rank_tol, optimize); rank_tol, optimize);
EXPECT(assert_equal(kLandmark, *actual2, 1e-7)); EXPECT(assert_equal(kLandmark, *actual2, 1e-7));
@ -260,14 +248,14 @@ TEST(triangulation, twoPosesFisheye) {
measurements.at(1) += Point2(-0.2, 0.3); measurements.at(1) += Point2(-0.2, 0.3);
optimize = false; optimize = false;
boost::optional<Point3> actual3 = // boost::optional<Point3> actual3 = //
triangulatePoint3<Calibration>(poses, sharedDistortedCal, measurements, triangulatePoint3<Calibration>(kPoses, sharedDistortedCal, measurements,
rank_tol, optimize); rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-3)); EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-3));
// 4. Now with optimization on // 4. Now with optimization on
optimize = true; optimize = true;
boost::optional<Point3> actual4 = // boost::optional<Point3> actual4 = //
triangulatePoint3<Calibration>(poses, sharedDistortedCal, measurements, triangulatePoint3<Calibration>(kPoses, sharedDistortedCal, measurements,
rank_tol, optimize); rank_tol, optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-3)); EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-3));
} }
@ -284,17 +272,13 @@ TEST(triangulation, twoPosesBundler) {
Point2 z1 = camera1.project(kLandmark); Point2 z1 = camera1.project(kLandmark);
Point2 z2 = camera2.project(kLandmark); Point2 z2 = camera2.project(kLandmark);
vector<Pose3> poses; Point2Vector measurements{z1, z2};
Point2Vector measurements;
poses += kPose1, kPose2;
measurements += z1, z2;
bool optimize = true; bool optimize = true;
double rank_tol = 1e-9; double rank_tol = 1e-9;
boost::optional<Point3> actual = // boost::optional<Point3> actual = //
triangulatePoint3<Cal3Bundler>(poses, bundlerCal, measurements, rank_tol, triangulatePoint3<Cal3Bundler>(kPoses, bundlerCal, measurements, rank_tol,
optimize); optimize);
EXPECT(assert_equal(kLandmark, *actual, 1e-7)); EXPECT(assert_equal(kLandmark, *actual, 1e-7));
@ -303,19 +287,15 @@ TEST(triangulation, twoPosesBundler) {
measurements.at(1) += Point2(-0.2, 0.3); measurements.at(1) += Point2(-0.2, 0.3);
boost::optional<Point3> actual2 = // boost::optional<Point3> actual2 = //
triangulatePoint3<Cal3Bundler>(poses, bundlerCal, measurements, rank_tol, triangulatePoint3<Cal3Bundler>(kPoses, bundlerCal, measurements, rank_tol,
optimize); optimize);
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19847), *actual2, 1e-3)); EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19847), *actual2, 1e-3));
} }
//****************************************************************************** //******************************************************************************
TEST(triangulation, fourPoses) { TEST(triangulation, fourPoses) {
vector<Pose3> poses; Pose3Vector poses = kPoses;
Point2Vector measurements; Point2Vector measurements = kMeasurements;
poses += kPose1, kPose2;
measurements += kZ1, kZ2;
boost::optional<Point3> actual = boost::optional<Point3> actual =
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements); triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
EXPECT(assert_equal(kLandmark, *actual, 1e-2)); EXPECT(assert_equal(kLandmark, *actual, 1e-2));
@ -334,8 +314,8 @@ TEST(triangulation, fourPoses) {
PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal); PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal);
Point2 z3 = camera3.project(kLandmark); Point2 z3 = camera3.project(kLandmark);
poses += pose3; poses.push_back(pose3);
measurements += z3 + Point2(0.1, -0.1); measurements.push_back(z3 + Point2(0.1, -0.1));
boost::optional<Point3> triangulated_3cameras = // boost::optional<Point3> triangulated_3cameras = //
triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements); triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements);
@ -353,8 +333,8 @@ TEST(triangulation, fourPoses) {
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION #ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
CHECK_EXCEPTION(camera4.project(kLandmark), CheiralityException); CHECK_EXCEPTION(camera4.project(kLandmark), CheiralityException);
poses += pose4; poses.push_back(pose4);
measurements += Point2(400, 400); measurements.emplace_back(400, 400);
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements), CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements),
TriangulationCheiralityException); TriangulationCheiralityException);
@ -368,10 +348,8 @@ TEST(triangulation, threePoses_robustNoiseModel) {
PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal); PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal);
Point2 z3 = camera3.project(kLandmark); Point2 z3 = camera3.project(kLandmark);
vector<Pose3> poses; const vector<Pose3> poses{kPose1, kPose2, pose3};
Point2Vector measurements; Point2Vector measurements{kZ1, kZ2, z3};
poses += kPose1, kPose2, pose3;
measurements += kZ1, kZ2, z3;
// noise free, so should give exactly the landmark // noise free, so should give exactly the landmark
boost::optional<Point3> actual = boost::optional<Point3> actual =
@ -410,10 +388,9 @@ TEST(triangulation, fourPoses_robustNoiseModel) {
PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal); PinholeCamera<Cal3_S2> camera3(pose3, *kSharedCal);
Point2 z3 = camera3.project(kLandmark); Point2 z3 = camera3.project(kLandmark);
vector<Pose3> poses; const vector<Pose3> poses{kPose1, kPose1, kPose2, pose3};
Point2Vector measurements; // 2 measurements from pose 1:
poses += kPose1, kPose1, kPose2, pose3; // 2 measurements from pose 1 Point2Vector measurements{kZ1, kZ1, kZ2, z3};
measurements += kZ1, kZ1, kZ2, z3;
// noise free, so should give exactly the landmark // noise free, so should give exactly the landmark
boost::optional<Point3> actual = boost::optional<Point3> actual =
@ -463,11 +440,8 @@ TEST(triangulation, fourPoses_distinct_Ks) {
Point2 z1 = camera1.project(kLandmark); Point2 z1 = camera1.project(kLandmark);
Point2 z2 = camera2.project(kLandmark); Point2 z2 = camera2.project(kLandmark);
CameraSet<PinholeCamera<Cal3_S2>> cameras; CameraSet<PinholeCamera<Cal3_S2>> cameras{camera1, camera2};
Point2Vector measurements; Point2Vector measurements{z1, z2};
cameras += camera1, camera2;
measurements += z1, z2;
boost::optional<Point3> actual = // boost::optional<Point3> actual = //
triangulatePoint3<Cal3_S2>(cameras, measurements); triangulatePoint3<Cal3_S2>(cameras, measurements);
@ -488,8 +462,8 @@ TEST(triangulation, fourPoses_distinct_Ks) {
PinholeCamera<Cal3_S2> camera3(pose3, K3); PinholeCamera<Cal3_S2> camera3(pose3, K3);
Point2 z3 = camera3.project(kLandmark); Point2 z3 = camera3.project(kLandmark);
cameras += camera3; cameras.push_back(camera3);
measurements += z3 + Point2(0.1, -0.1); measurements.push_back(z3 + Point2(0.1, -0.1));
boost::optional<Point3> triangulated_3cameras = // boost::optional<Point3> triangulated_3cameras = //
triangulatePoint3<Cal3_S2>(cameras, measurements); triangulatePoint3<Cal3_S2>(cameras, measurements);
@ -508,8 +482,8 @@ TEST(triangulation, fourPoses_distinct_Ks) {
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION #ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
CHECK_EXCEPTION(camera4.project(kLandmark), CheiralityException); CHECK_EXCEPTION(camera4.project(kLandmark), CheiralityException);
cameras += camera4; cameras.push_back(camera4);
measurements += Point2(400, 400); measurements.emplace_back(400, 400);
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(cameras, measurements), CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(cameras, measurements),
TriangulationCheiralityException); TriangulationCheiralityException);
#endif #endif
@ -529,11 +503,8 @@ TEST(triangulation, fourPoses_distinct_Ks_distortion) {
Point2 z1 = camera1.project(kLandmark); Point2 z1 = camera1.project(kLandmark);
Point2 z2 = camera2.project(kLandmark); Point2 z2 = camera2.project(kLandmark);
CameraSet<PinholeCamera<Cal3DS2>> cameras; const CameraSet<PinholeCamera<Cal3DS2>> cameras{camera1, camera2};
Point2Vector measurements; const Point2Vector measurements{z1, z2};
cameras += camera1, camera2;
measurements += z1, z2;
boost::optional<Point3> actual = // boost::optional<Point3> actual = //
triangulatePoint3<Cal3DS2>(cameras, measurements); triangulatePoint3<Cal3DS2>(cameras, measurements);
@ -554,11 +525,8 @@ TEST(triangulation, outliersAndFarLandmarks) {
Point2 z1 = camera1.project(kLandmark); Point2 z1 = camera1.project(kLandmark);
Point2 z2 = camera2.project(kLandmark); Point2 z2 = camera2.project(kLandmark);
CameraSet<PinholeCamera<Cal3_S2>> cameras; CameraSet<PinholeCamera<Cal3_S2>> cameras{camera1, camera2};
Point2Vector measurements; Point2Vector measurements{z1, z2};
cameras += camera1, camera2;
measurements += z1, z2;
double landmarkDistanceThreshold = 10; // landmark is closer than that double landmarkDistanceThreshold = 10; // landmark is closer than that
TriangulationParameters params( TriangulationParameters params(
@ -582,8 +550,8 @@ TEST(triangulation, outliersAndFarLandmarks) {
PinholeCamera<Cal3_S2> camera3(pose3, K3); PinholeCamera<Cal3_S2> camera3(pose3, K3);
Point2 z3 = camera3.project(kLandmark); Point2 z3 = camera3.project(kLandmark);
cameras += camera3; cameras.push_back(camera3);
measurements += z3 + Point2(10, -10); measurements.push_back(z3 + Point2(10, -10));
landmarkDistanceThreshold = 10; // landmark is closer than that landmarkDistanceThreshold = 10; // landmark is closer than that
double outlierThreshold = 100; // loose, the outlier is going to pass double outlierThreshold = 100; // loose, the outlier is going to pass
@ -608,11 +576,8 @@ TEST(triangulation, twoIdenticalPoses) {
// 1. Project two landmarks into two cameras and triangulate // 1. Project two landmarks into two cameras and triangulate
Point2 z1 = camera1.project(kLandmark); Point2 z1 = camera1.project(kLandmark);
vector<Pose3> poses; const vector<Pose3> poses{kPose1, kPose1};
Point2Vector measurements; const Point2Vector measurements{z1, z1};
poses += kPose1, kPose1;
measurements += z1, z1;
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements), CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements),
TriangulationUnderconstrainedException); TriangulationUnderconstrainedException);
@ -623,22 +588,19 @@ TEST(triangulation, onePose) {
// we expect this test to fail with a TriangulationUnderconstrainedException // we expect this test to fail with a TriangulationUnderconstrainedException
// because there's only one camera observation // because there's only one camera observation
vector<Pose3> poses; const vector<Pose3> poses{Pose3()};
Point2Vector measurements; const Point2Vector measurements {{0,0}};
poses += Pose3();
measurements += Point2(0, 0);
CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements), CHECK_EXCEPTION(triangulatePoint3<Cal3_S2>(poses, kSharedCal, measurements),
TriangulationUnderconstrainedException); TriangulationUnderconstrainedException);
} }
//****************************************************************************** //******************************************************************************
TEST(triangulation, StereotriangulateNonlinear) { TEST(triangulation, StereoTriangulateNonlinear) {
auto stereoK = boost::make_shared<Cal3_S2Stereo>(1733.75, 1733.75, 0, 689.645, auto stereoK = boost::make_shared<Cal3_S2Stereo>(1733.75, 1733.75, 0, 689.645,
508.835, 0.0699612); 508.835, 0.0699612);
// two camera poses m1, m2 // two camera kPoses m1, m2
Matrix4 m1, m2; Matrix4 m1, m2;
m1 << 0.796888717, 0.603404026, -0.0295271487, 46.6673779, 0.592783835, m1 << 0.796888717, 0.603404026, -0.0295271487, 46.6673779, 0.592783835,
-0.77156583, 0.230856632, 66.2186159, 0.116517574, -0.201470143, -0.77156583, 0.230856632, 66.2186159, 0.116517574, -0.201470143,
@ -648,14 +610,12 @@ TEST(triangulation, StereotriangulateNonlinear) {
0.947083213, 0.131587097, 65.843136, -0.0206094928, 0.131334858, 0.947083213, 0.131587097, 65.843136, -0.0206094928, 0.131334858,
-0.991123524, -4.3525033, 0, 0, 0, 1; -0.991123524, -4.3525033, 0, 0, 0, 1;
typedef CameraSet<StereoCamera> Cameras; typedef CameraSet<StereoCamera> StereoCameras;
Cameras cameras; const StereoCameras cameras{{Pose3(m1), stereoK}, {Pose3(m2), stereoK}};
cameras.push_back(StereoCamera(Pose3(m1), stereoK));
cameras.push_back(StereoCamera(Pose3(m2), stereoK));
StereoPoint2Vector measurements; StereoPoint2Vector measurements;
measurements += StereoPoint2(226.936, 175.212, 424.469); measurements.push_back(StereoPoint2(226.936, 175.212, 424.469));
measurements += StereoPoint2(339.571, 285.547, 669.973); measurements.push_back(StereoPoint2(339.571, 285.547, 669.973));
Point3 initial = Point3 initial =
Point3(46.0536958, 66.4621179, -6.56285929); // error: 96.5715555191 Point3(46.0536958, 66.4621179, -6.56285929); // error: 96.5715555191
@ -741,8 +701,6 @@ TEST(triangulation, StereotriangulateNonlinear) {
//****************************************************************************** //******************************************************************************
// Simple test with a well-behaved two camera situation // Simple test with a well-behaved two camera situation
TEST(triangulation, twoPoses_sphericalCamera) { TEST(triangulation, twoPoses_sphericalCamera) {
vector<Pose3> poses;
std::vector<Unit3> measurements;
// Project landmark into two cameras and triangulate // Project landmark into two cameras and triangulate
SphericalCamera cam1(kPose1); SphericalCamera cam1(kPose1);
@ -750,8 +708,7 @@ TEST(triangulation, twoPoses_sphericalCamera) {
Unit3 u1 = cam1.project(kLandmark); Unit3 u1 = cam1.project(kLandmark);
Unit3 u2 = cam2.project(kLandmark); Unit3 u2 = cam2.project(kLandmark);
poses += kPose1, kPose2; std::vector<Unit3> measurements{u1, u2};
measurements += u1, u2;
CameraSet<SphericalCamera> cameras; CameraSet<SphericalCamera> cameras;
cameras.push_back(cam1); cameras.push_back(cam1);
@ -803,9 +760,6 @@ TEST(triangulation, twoPoses_sphericalCamera) {
//****************************************************************************** //******************************************************************************
TEST(triangulation, twoPoses_sphericalCamera_extremeFOV) { TEST(triangulation, twoPoses_sphericalCamera_extremeFOV) {
vector<Pose3> poses;
std::vector<Unit3> measurements;
// Project landmark into two cameras and triangulate // Project landmark into two cameras and triangulate
Pose3 poseA = Pose3( Pose3 poseA = Pose3(
Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
@ -825,8 +779,7 @@ TEST(triangulation, twoPoses_sphericalCamera_extremeFOV) {
EXPECT(assert_equal(Unit3(Point3(1.0, 0.0, -1.0)), u2, EXPECT(assert_equal(Unit3(Point3(1.0, 0.0, -1.0)), u2,
1e-7)); // behind and to the right of PoseB 1e-7)); // behind and to the right of PoseB
poses += kPose1, kPose2; const std::vector<Unit3> measurements{u1, u2};
measurements += u1, u2;
CameraSet<SphericalCamera> cameras; CameraSet<SphericalCamera> cameras;
cameras.push_back(cam1); cameras.push_back(cam1);