Adding lambdaMode flag - defaults to BOUNDED (bounds lambda at 1e5), CAUTIOUS is currently broken.
parent
fb1396d1c3
commit
d149afbec2
|
|
@ -132,7 +132,7 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
template<class G, class C, class L, class S, class W>
|
||||
NonlinearOptimizer<G, C, L, S, W> NonlinearOptimizer<G, C, L, S, W>::try_lambda(
|
||||
const L& linear, verbosityLevel verbosity, double factor) const {
|
||||
const L& linear, verbosityLevel verbosity, double factor, LambdaMode lambdaMode) const {
|
||||
|
||||
if (verbosity >= TRYLAMBDA)
|
||||
cout << "trying lambda = " << lambda_ << endl;
|
||||
|
|
@ -155,15 +155,43 @@ namespace gtsam {
|
|||
// create new optimization state with more adventurous lambda
|
||||
NonlinearOptimizer next(graph_, newConfig, solver_, lambda_ / factor);
|
||||
|
||||
// if error decreased, return the new state
|
||||
if (next.error_ <= error_)
|
||||
if(lambdaMode >= CAUTIOUS) {
|
||||
throw runtime_error("CAUTIOUS mode not working yet, please use BOUNDED.");
|
||||
}
|
||||
|
||||
if(next.error_ <= error_) {
|
||||
|
||||
// If we're cautious, see if the current lambda is better
|
||||
// todo: include stopping criterion here?
|
||||
if(lambdaMode == CAUTIOUS) {
|
||||
NonlinearOptimizer sameLambda(graph_, newConfig, solver_, lambda_);
|
||||
if(sameLambda.error_ <= next.error_)
|
||||
return sameLambda;
|
||||
}
|
||||
|
||||
// Either we're not cautious, or we are but the adventerous lambda is better than the same one.
|
||||
return next;
|
||||
else if (lambda_ / factor > 1e+80) // if lambda gets too big, something is broken
|
||||
throw runtime_error("Lambda has grown too large!");
|
||||
else {
|
||||
|
||||
} else {
|
||||
|
||||
// A more adventerous lambda was worse. If we're cautious, try the same lambda.
|
||||
if(lambdaMode == CAUTIOUS) {
|
||||
NonlinearOptimizer sameLambda(graph_, newConfig, solver_, lambda_);
|
||||
if(sameLambda.error_ <= error_)
|
||||
return sameLambda;
|
||||
}
|
||||
|
||||
// Either we're not cautious, or the same lambda was worse than the current error.
|
||||
// The more adventerous lambda was worse too, so make lambda more conservative
|
||||
// and keep the same config.
|
||||
// TODO: can we avoid copying the config ?
|
||||
NonlinearOptimizer cautious(graph_, config_, solver_, lambda_ * factor);
|
||||
return cautious.try_lambda(linear, verbosity, factor);
|
||||
if(lambdaMode >= BOUNDED && lambda_ >= 1.0e5) {
|
||||
return NonlinearOptimizer(graph_, newConfig, solver_, lambda_);;
|
||||
} else {
|
||||
NonlinearOptimizer cautious(graph_, config_, solver_, lambda_ * factor);
|
||||
return cautious.try_lambda(linear, verbosity, factor, lambdaMode);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -172,7 +200,7 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
template<class G, class C, class L, class S, class W>
|
||||
NonlinearOptimizer<G, C, L, S, W> NonlinearOptimizer<G, C, L, S, W>::iterateLM(
|
||||
verbosityLevel verbosity, double lambdaFactor) const {
|
||||
verbosityLevel verbosity, double lambdaFactor, LambdaMode lambdaMode) const {
|
||||
|
||||
// maybe show output
|
||||
if (verbosity >= CONFIG)
|
||||
|
|
@ -188,14 +216,14 @@ namespace gtsam {
|
|||
linear->print("linear");
|
||||
|
||||
// try lambda steps with successively larger lambda until we achieve descent
|
||||
return try_lambda(*linear, verbosity, lambdaFactor);
|
||||
return try_lambda(*linear, verbosity, lambdaFactor, lambdaMode);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class G, class C, class L, class S, class W>
|
||||
NonlinearOptimizer<G, C, L, S, W> NonlinearOptimizer<G, C, L, S, W>::levenbergMarquardt(
|
||||
double relativeThreshold, double absoluteThreshold,
|
||||
verbosityLevel verbosity, int maxIterations, double lambdaFactor) const {
|
||||
verbosityLevel verbosity, int maxIterations, double lambdaFactor, LambdaMode lambdaMode) const {
|
||||
|
||||
// check if we're already close enough
|
||||
if (error_ < absoluteThreshold) {
|
||||
|
|
@ -205,7 +233,7 @@ namespace gtsam {
|
|||
}
|
||||
|
||||
// do one iteration of LM
|
||||
NonlinearOptimizer next = iterateLM(verbosity, lambdaFactor);
|
||||
NonlinearOptimizer next = iterateLM(verbosity, lambdaFactor, lambdaMode);
|
||||
|
||||
// check convergence
|
||||
// TODO: move convergence checks here and incorporate in verbosity levels
|
||||
|
|
@ -225,7 +253,7 @@ namespace gtsam {
|
|||
return next;
|
||||
} else
|
||||
return next.levenbergMarquardt(relativeThreshold, absoluteThreshold,
|
||||
verbosity, lambdaFactor);
|
||||
verbosity, maxIterations-1, lambdaFactor, lambdaMode);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -61,6 +61,12 @@ namespace gtsam {
|
|||
DAMPED
|
||||
};
|
||||
|
||||
enum LambdaMode {
|
||||
FAST,
|
||||
BOUNDED,
|
||||
CAUTIOUS
|
||||
};
|
||||
|
||||
private:
|
||||
|
||||
// keep a reference to const version of the graph
|
||||
|
|
@ -81,7 +87,7 @@ namespace gtsam {
|
|||
|
||||
// Recursively try to do tempered Gauss-Newton steps until we succeed
|
||||
NonlinearOptimizer try_lambda(const L& linear,
|
||||
verbosityLevel verbosity, double factor) const;
|
||||
verbosityLevel verbosity, double factor, LambdaMode lambdaMode) const;
|
||||
|
||||
public:
|
||||
|
||||
|
|
@ -144,7 +150,7 @@ namespace gtsam {
|
|||
* One iteration of Levenberg Marquardt
|
||||
*/
|
||||
NonlinearOptimizer iterateLM(verbosityLevel verbosity = SILENT,
|
||||
double lambdaFactor = 10) const;
|
||||
double lambdaFactor = 10, LambdaMode lambdaMode = BOUNDED) const;
|
||||
|
||||
/**
|
||||
* Optimize using Levenberg-Marquardt. Really Levenberg's
|
||||
|
|
@ -163,7 +169,7 @@ namespace gtsam {
|
|||
NonlinearOptimizer
|
||||
levenbergMarquardt(double relativeThreshold, double absoluteThreshold,
|
||||
verbosityLevel verbosity = SILENT, int maxIterations = 100,
|
||||
double lambdaFactor = 10) const;
|
||||
double lambdaFactor = 10, LambdaMode lambdaMode = BOUNDED) const;
|
||||
|
||||
};
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue