Some new methods and improvements to Unit3 from Skydio

release/4.3a0
Frank 2015-10-13 12:31:01 -07:00
parent 0273d94cfd
commit d087f2fdf8
3 changed files with 549 additions and 207 deletions

View File

@ -15,12 +15,14 @@
* @author Can Erdogan
* @author Frank Dellaert
* @author Alex Trevor
* @author Zhaoyang Lv
* @brief The Unit3 class - basically a point on a unit sphere
*/
#include <gtsam/geometry/Unit3.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/config.h> // GTSAM_USE_TBB
#include <boost/random/mersenne_twister.hpp>
#include <gtsam/config.h> // for GTSAM_USE_TBB
#ifdef __clang__
@ -32,13 +34,8 @@
# pragma clang diagnostic pop
#endif
#ifdef GTSAM_USE_TBB
#include <tbb/mutex.h>
#endif
#include <boost/random/variate_generator.hpp>
#include <iostream>
#include <limits>
using namespace std;
@ -46,14 +43,12 @@ namespace gtsam {
/* ************************************************************************* */
Unit3 Unit3::FromPoint3(const Point3& point, OptionalJacobian<2,3> H) {
Unit3 direction(point);
if (H) {
// 3*3 Derivative of representation with respect to point is 3*3:
Matrix3 D_p_point;
point.normalize(D_p_point); // TODO, this calculates norm a second time :-(
// Calculate the 2*3 Jacobian
Unit3 direction;
direction.p_ = point.normalize(H ? &D_p_point : 0);
if (H)
*H << direction.basis().transpose() * D_p_point;
}
return direction;
}
@ -63,49 +58,105 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
boost::uniform_on_sphere<double> randomDirection(3);
// This variate_generator object is required for versions of boost somewhere
// around 1.46, instead of drawing directly using boost::uniform_on_sphere(rng).
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> > generator(
rng, randomDirection);
boost::variate_generator<boost::mt19937&, boost::uniform_on_sphere<double> >
generator(rng, randomDirection);
vector<double> d = generator();
return Unit3(d[0], d[1], d[2]);
Unit3 result;
result.p_ = Point3(d[0], d[1], d[2]);
return result;
}
#ifdef GTSAM_USE_TBB
tbb::mutex unit3BasisMutex;
#endif
/* ************************************************************************* */
const Matrix32& Unit3::basis() const {
const Matrix32& Unit3::basis(OptionalJacobian<6, 2> H) const {
#ifdef GTSAM_USE_TBB
tbb::mutex::scoped_lock lock(unit3BasisMutex);
// NOTE(hayk): At some point it seemed like this reproducably resulted in deadlock. However, I
// can't see the reason why and I can no longer reproduce it. It may have been a red herring, or
// there is still a latent bug to watch out for.
tbb::mutex::scoped_lock lock(B_mutex_);
#endif
// Return cached version if exists
if (B_) return *B_;
// Return cached basis if available and the Jacobian isn't needed.
if (B_ && !H) {
return *B_;
}
// Return cached basis and derivatives if available.
if (B_ && H && H_B_) {
*H = *H_B_;
return *B_;
}
// Get the unit vector and derivative wrt this.
// NOTE(hayk): We can't call point3(), because it would recursively call basis().
const Point3& n = p_;
// Get the axis of rotation with the minimum projected length of the point
Vector3 axis;
double mx = fabs(p_.x()), my = fabs(p_.y()), mz = fabs(p_.z());
if ((mx <= my) && (mx <= mz))
axis = Vector3(1.0, 0.0, 0.0);
else if ((my <= mx) && (my <= mz))
axis = Vector3(0.0, 1.0, 0.0);
else if ((mz <= mx) && (mz <= my))
axis = Vector3(0.0, 0.0, 1.0);
else
Point3 axis;
double mx = fabs(n.x()), my = fabs(n.y()), mz = fabs(n.z());
if ((mx <= my) && (mx <= mz)) {
axis = Point3(1.0, 0.0, 0.0);
} else if ((my <= mx) && (my <= mz)) {
axis = Point3(0.0, 1.0, 0.0);
} else if ((mz <= mx) && (mz <= my)) {
axis = Point3(0.0, 0.0, 1.0);
} else {
assert(false);
}
// Create the two basis vectors
Vector3 b1 = p_.cross(axis).normalized();
Vector3 b2 = p_.cross(b1).normalized();
// Choose the direction of the first basis vector b1 in the tangent plane by crossing n with
// the chosen axis.
Matrix33 H_B1_n;
Point3 B1 = n.cross(axis, H ? &H_B1_n : nullptr);
// Create the basis matrix
// Normalize result to get a unit vector: b1 = B1 / |B1|.
Matrix33 H_b1_B1;
Point3 b1 = B1.normalize(H ? &H_b1_B1 : nullptr);
// Get the second basis vector b2, which is orthogonal to n and b1, by crossing them.
// No need to normalize this, p and b1 are orthogonal unit vectors.
Matrix33 H_b2_n, H_b2_b1;
Point3 b2 = n.cross(b1, H ? &H_b2_n : nullptr, H ? &H_b2_b1 : nullptr);
// Create the basis by stacking b1 and b2.
B_.reset(Matrix32());
(*B_) << b1, b2;
(*B_) << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
if (H) {
// Chain rule tomfoolery to compute the derivative.
const Matrix32& H_n_p = *B_;
Matrix32 H_b1_p = H_b1_B1 * H_B1_n * H_n_p;
Matrix32 H_b2_p = H_b2_n * H_n_p + H_b2_b1 * H_b1_p;
// Cache the derivative and fill the result.
H_B_.reset(Matrix62());
(*H_B_) << H_b1_p, H_b2_p;
*H = *H_B_;
}
return *B_;
}
/* ************************************************************************* */
/// The print fuction
const Point3& Unit3::point3(OptionalJacobian<3, 2> H) const {
if (H)
*H = basis();
return p_;
}
/* ************************************************************************* */
Vector3 Unit3::unitVector(boost::optional<Matrix&> H) const {
if (H)
*H = basis();
return (p_.vector());
}
/* ************************************************************************* */
std::ostream& operator<<(std::ostream& os, const Unit3& pair) {
os << pair.p_ << endl;
return os;
}
/* ************************************************************************* */
void Unit3::print(const std::string& s) const {
cout << s << ":" << p_ << endl;
}
@ -116,11 +167,72 @@ Matrix3 Unit3::skew() const {
}
/* ************************************************************************* */
Vector2 Unit3::error(const Unit3& q, OptionalJacobian<2,2> H) const {
double Unit3::dot(const Unit3& q, OptionalJacobian<1,2> H_p, OptionalJacobian<1,2> H_q) const {
// Get the unit vectors of each, and the derivative.
Matrix32 H_pn_p;
const Point3& pn = point3(H_p ? &H_pn_p : 0);
Matrix32 H_qn_q;
const Point3& qn = q.point3(H_q ? &H_qn_q : 0);
// Compute the dot product of the Point3s.
Matrix13 H_dot_pn, H_dot_qn;
double d = pn.dot(qn, H_p ? &H_dot_pn : nullptr, H_q ? &H_dot_qn : nullptr);
if (H_p) {
(*H_p) << H_dot_pn * H_pn_p;
}
if (H_q) {
(*H_q) = H_dot_qn * H_qn_q;
}
return d;
}
/* ************************************************************************* */
Vector2 Unit3::error(const Unit3& q, OptionalJacobian<2,2> H_q) const {
// 2D error is equal to B'*q, as B is 3x2 matrix and q is 3x1
Vector2 xi = basis().transpose() * q.p_;
if (H)
*H = basis().transpose() * q.basis();
Matrix23 Bt = basis().transpose();
Vector2 xi = Bt * q.p_.vector();
if (H_q) {
*H_q = Bt * q.basis();
}
return xi;
}
/* ************************************************************************* */
Vector2 Unit3::errorVector(const Unit3& q, OptionalJacobian<2, 2> H_p, OptionalJacobian<2, 2> H_q) const {
// Get the point3 of this, and the derivative.
Matrix32 H_qn_q;
const Point3& qn = q.point3(H_q ? &H_qn_q : 0);
// 2D error here is projecting q into the tangent plane of this (p).
Matrix62 H_B_p;
Matrix23 Bt = basis(H_p ? &H_B_p : nullptr).transpose();
Vector2 xi = Bt * qn.vector();
if (H_p) {
// Derivatives of each basis vector.
const Matrix32& H_b1_p = H_B_p.block<3, 2>(0, 0);
const Matrix32& H_b2_p = H_B_p.block<3, 2>(3, 0);
// Derivatives of the two entries of xi wrt the basis vectors.
Matrix13 H_xi1_b1 = qn.vector().transpose();
Matrix13 H_xi2_b2 = qn.vector().transpose();
// Assemble dxi/dp = dxi/dB * dB/dp.
Matrix12 H_xi1_p = H_xi1_b1 * H_b1_p;
Matrix12 H_xi2_p = H_xi2_b2 * H_b2_p;
*H_p << H_xi1_p, H_xi2_p;
}
if (H_q) {
// dxi/dq is given by dxi/dqu * dqu/dq, where qu is the unit vector of q.
Matrix23 H_xi_qu = Bt;
*H_q = H_xi_qu * H_qn_q;
}
return xi;
}
@ -136,39 +248,46 @@ double Unit3::distance(const Unit3& q, OptionalJacobian<1,2> H) const {
/* ************************************************************************* */
Unit3 Unit3::retract(const Vector2& v) const {
// Compute the 3D xi_hat vector
Vector3 xi_hat = basis() * v;
double theta = xi_hat.norm();
// Treat case of very small v differently
if (theta < std::numeric_limits<double>::epsilon()) {
return Unit3(cos(theta) * p_ + xi_hat);
// Get the vector form of the point and the basis matrix
Vector3 p = p_.vector();
Matrix32 B = basis();
// Compute the 3D xi_hat vector
Vector3 xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
double xi_hat_norm = xi_hat.norm();
// Avoid nan
if (xi_hat_norm == 0.0) {
if (v.norm() == 0.0)
return Unit3(point3());
else
return Unit3(-point3());
}
Vector3 exp_p_xi_hat =
cos(theta) * p_ + xi_hat * (sin(theta) / theta);
Vector3 exp_p_xi_hat = cos(xi_hat_norm) * p
+ sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
return Unit3(exp_p_xi_hat);
}
/* ************************************************************************* */
Vector2 Unit3::localCoordinates(const Unit3& other) const {
const double x = p_.dot(other.p_);
// Crucial quantity here is y = theta/sin(theta) with theta=acos(x)
// Now, y = acos(x) / sin(acos(x)) = acos(x)/sqrt(1-x^2)
// We treat the special case 1 and -1 below
const double x2 = x * x;
const double z = 1 - x2;
double y;
if (z < std::numeric_limits<double>::epsilon()) {
if (x > 0) // first order expansion at x=1
y = 1.0 - (x - 1.0) / 3.0;
else // cop out
return Vector2(M_PI, 0.0);
} else {
Vector2 Unit3::localCoordinates(const Unit3& y) const {
Vector3 p = p_.vector(), q = y.p_.vector();
double dot = p.dot(q);
// Check for special cases
if (dot > 1.0 - 1e-16)
return Vector2(0, 0);
else if (dot < -1.0 + 1e-16)
return Vector2(M_PI, 0);
else {
// no special case
y = acos(x) / sqrt(z);
double theta = acos(dot);
Vector3 result_hat = (theta / sin(theta)) * (q - p * dot);
return basis().transpose() * result_hat;
}
return basis().transpose() * y * (other.p_ - x * p_);
}
/* ************************************************************************* */

View File

@ -20,16 +20,16 @@
#pragma once
#include <gtsam/geometry/Point3.h>
#include <gtsam/base/Manifold.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/dllexport.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Point3.h>
#include <boost/optional.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/serialization/nvp.hpp>
#include <boost/optional.hpp>
#include <string>
#ifdef GTSAM_USE_TBB
#include <tbb/mutex.h>
#endif
namespace gtsam {
@ -38,8 +38,13 @@ class GTSAM_EXPORT Unit3 {
private:
Vector3 p_; ///< The location of the point on the unit sphere
Point3 p_; ///< The location of the point on the unit sphere
mutable boost::optional<Matrix32> B_; ///< Cached basis
mutable boost::optional<Matrix62> H_B_; ///< Cached basis derivative
#ifdef GTSAM_USE_TBB
mutable tbb::mutex B_mutex_; ///< Mutex to protect the cached basis.
#endif
public:
@ -57,18 +62,23 @@ public:
/// Construct from point
explicit Unit3(const Point3& p) :
p_(p.vector().normalized()) {
p_(p.normalize()) {
}
/// Construct from a vector3
explicit Unit3(const Vector3& p) :
p_(p.normalized()) {
explicit Unit3(const Vector3& v) :
p_(v / v.norm()) {
}
/// Construct from x,y,z
Unit3(double x, double y, double z) :
p_(x, y, z) {
p_.normalize();
p_(Point3(x, y, z).normalize()) {
}
/// Construct from 2D point in plane at focal length f
/// Unit3(p,1) can be viewed as normalized homogeneous coordinates of 2D point
explicit Unit3(const Point2& p, double f=1.0) :
p_(Point3(p.x(), p.y(), f).normalize()) {
}
/// Named constructor from Point3 with optional Jacobian
@ -83,12 +93,14 @@ public:
/// @name Testable
/// @{
friend std::ostream& operator<<(std::ostream& os, const Unit3& pair);
/// The print fuction
void print(const std::string& s = std::string()) const;
/// The equals function with tolerance
bool equals(const Unit3& s, double tol = 1e-9) const {
return equal_with_abs_tol(p_, s.p_, tol);
return p_.equals(s.p_, tol);
}
/// @}
@ -99,37 +111,50 @@ public:
* Returns the local coordinate frame to tangent plane
* It is a 3*2 matrix [b1 b2] composed of two orthogonal directions
* tangent to the sphere at the current direction.
* Provides derivatives of the basis with the two basis vectors stacked up as a 6x1.
*/
const Matrix32& basis() const;
const Matrix32& basis(OptionalJacobian<6, 2> H = boost::none) const;
/// Return skew-symmetric associated with 3D point on unit sphere
Matrix3 skew() const;
/// Return unit-norm Point3
Point3 point3(OptionalJacobian<3, 2> H = boost::none) const {
if (H)
*H = basis();
return Point3(p_);
}
const Point3& point3(OptionalJacobian<3, 2> H = boost::none) const;
/// Return unit-norm Vector
const Vector3& unitVector(boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = basis();
return p_;
}
Vector3 unitVector(boost::optional<Matrix&> H = boost::none) const;
/// Return scaled direction as Point3
friend Point3 operator*(double s, const Unit3& d) {
return Point3(s * d.p_);
return s * d.p_;
}
/// Return dot product with q
double dot(const Unit3& q, OptionalJacobian<1,2> H1 = boost::none, //
OptionalJacobian<1,2> H2 = boost::none) const;
/// Signed, vector-valued error between two directions
Vector2 error(const Unit3& q, OptionalJacobian<2, 2> H = boost::none) const;
/// @deprecated, errorVector has the proper derivatives, this confusingly has only the second.
Vector2 error(const Unit3& q, OptionalJacobian<2, 2> H_q = boost::none) const;
/// Signed, vector-valued error between two directions
/// NOTE(hayk): This method has zero derivatives if this (p) and q are orthogonal.
Vector2 errorVector(const Unit3& q, OptionalJacobian<2, 2> H_p = boost::none, //
OptionalJacobian<2, 2> H_q = boost::none) const;
/// Distance between two directions
double distance(const Unit3& q, OptionalJacobian<1, 2> H = boost::none) const;
/// Cross-product between two Unit3s
Unit3 cross(const Unit3& q) const {
return Unit3(p_.cross(q.p_));
}
/// Cross-product w Point3
Point3 cross(const Point3& q) const {
return Point3(p_.vector().cross(q.vector()));
}
/// @}
/// @name Manifold
@ -147,7 +172,7 @@ public:
enum CoordinatesMode {
EXPMAP, ///< Use the exponential map to retract
RENORM ///< Retract with vector addition and renormalize.
RENORM ///< Retract with vector addtion and renormalize.
};
/// The retract function
@ -167,6 +192,13 @@ private:
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_NVP(p_);
// homebrew serialize Eigen Matrix
ar & boost::serialization::make_nvp("B11", (*B_)(0, 0));
ar & boost::serialization::make_nvp("B12", (*B_)(0, 1));
ar & boost::serialization::make_nvp("B21", (*B_)(1, 0));
ar & boost::serialization::make_nvp("B22", (*B_)(1, 1));
ar & boost::serialization::make_nvp("B31", (*B_)(2, 0));
ar & boost::serialization::make_nvp("B32", (*B_)(2, 1));
}
/// @}

View File

@ -22,19 +22,26 @@
#include <gtsam/geometry/Rot3.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/serializationTestHelpers.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/ExpressionFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/slam/expressions.h>
#include <gtsam/slam/PriorFactor.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
#include <boost/foreach.hpp>
#include <boost/random.hpp>
//#include <boost/thread.hpp>
#include <boost/assign/std/vector.hpp>
#include <cmath>
using namespace boost::assign;
using namespace gtsam;
using namespace std;
using gtsam::symbol_shorthand::U;
GTSAM_CONCEPT_TESTABLE_INST(Unit3)
GTSAM_CONCEPT_MANIFOLD_INST(Unit3)
@ -43,7 +50,6 @@ GTSAM_CONCEPT_MANIFOLD_INST(Unit3)
Point3 point3_(const Unit3& p) {
return p.point3();
}
TEST(Unit3, point3) {
vector<Point3> ps;
ps += Point3(1, 0, 0), Point3(0, 1, 0), Point3(0, 0, 1), Point3(1, 1, 0)
@ -69,7 +75,7 @@ TEST(Unit3, rotate) {
Unit3 actual = R * p;
EXPECT(assert_equal(expected, actual, 1e-8));
Matrix actualH, expectedH;
// Use numerical derivatives to calculate the expected Jacobian
{
expectedH = numericalDerivative21(rotate_, R, p);
R.rotate(p, actualH, boost::none);
@ -93,8 +99,8 @@ TEST(Unit3, unrotate) {
Unit3 expected = Unit3(1, 1, 0);
Unit3 actual = R.unrotate(p);
EXPECT(assert_equal(expected, actual, 1e-8));
Matrix actualH, expectedH;
// Use numerical derivatives to calculate the expected Jacobian
{
expectedH = numericalDerivative21(unrotate_, R, p);
R.unrotate(p, actualH, boost::none);
@ -107,6 +113,37 @@ TEST(Unit3, unrotate) {
}
}
TEST(Unit3, dot) {
Unit3 p(1, 0.2, 0.3);
Unit3 q = p.retract(Vector2(0.5, 0));
Unit3 r = p.retract(Vector2(0.8, 0));
Unit3 t = p.retract(Vector2(0, 0.3));
EXPECT(assert_equal(1.0, p.dot(p), 1e-8));
EXPECT(assert_equal(0.877583, p.dot(q), 1e-5));
EXPECT(assert_equal(0.696707, p.dot(r), 1e-5));
EXPECT(assert_equal(0.955336, p.dot(t), 1e-5));
// Use numerical derivatives to calculate the expected Jacobians
Matrix H1, H2;
boost::function<double(const Unit3&, const Unit3&)> f = boost::bind(&Unit3::dot, _1, _2, //
boost::none, boost::none);
{
p.dot(q, H1, H2);
EXPECT(assert_equal(numericalDerivative21<double,Unit3>(f, p, q), H1, 1e-9));
EXPECT(assert_equal(numericalDerivative22<double,Unit3>(f, p, q), H2, 1e-9));
}
{
p.dot(r, H1, H2);
EXPECT(assert_equal(numericalDerivative21<double,Unit3>(f, p, r), H1, 1e-9));
EXPECT(assert_equal(numericalDerivative22<double,Unit3>(f, p, r), H2, 1e-9));
}
{
p.dot(t, H1, H2);
EXPECT(assert_equal(numericalDerivative21<double,Unit3>(f, p, t), H1, 1e-9));
EXPECT(assert_equal(numericalDerivative22<double,Unit3>(f, p, t), H2, 1e-9));
}
}
//*******************************************************************************
TEST(Unit3, error) {
Unit3 p(1, 0, 0), q = p.retract(Vector2(0.5, 0)), //
@ -116,6 +153,7 @@ TEST(Unit3, error) {
EXPECT(assert_equal((Vector)(Vector2(0.717356, 0)), p.error(r), 1e-5));
Matrix actual, expected;
// Use numerical derivatives to calculate the expected Jacobian
{
expected = numericalDerivative11<Vector2,Unit3>(
boost::bind(&Unit3::error, &p, _1, boost::none), q);
@ -130,6 +168,45 @@ TEST(Unit3, error) {
}
}
//*******************************************************************************
TEST(Unit3, error2) {
Unit3 p(0.1, -0.2, 0.8);
Unit3 q = p.retract(Vector2(0.2, -0.1));
Unit3 r = p.retract(Vector2(0.8, 0));
// Hard-coded as simple regression values
EXPECT(assert_equal((Vector)(Vector2(0.0, 0.0)), p.errorVector(p), 1e-8));
EXPECT(assert_equal((Vector)(Vector2(0.198337495, -0.0991687475)), p.errorVector(q), 1e-5));
EXPECT(assert_equal((Vector)(Vector2(0.717356, 0)), p.errorVector(r), 1e-5));
Matrix actual, expected;
// Use numerical derivatives to calculate the expected Jacobian
{
expected = numericalDerivative21<Vector2, Unit3, Unit3>(
boost::bind(&Unit3::errorVector, _1, _2, boost::none, boost::none), p, q);
p.errorVector(q, actual, boost::none);
EXPECT(assert_equal(expected, actual, 1e-9));
}
{
expected = numericalDerivative21<Vector2, Unit3, Unit3>(
boost::bind(&Unit3::errorVector, _1, _2, boost::none, boost::none), p, r);
p.errorVector(r, actual, boost::none);
EXPECT(assert_equal(expected, actual, 1e-9));
}
{
expected = numericalDerivative22<Vector2, Unit3, Unit3>(
boost::bind(&Unit3::errorVector, _1, _2, boost::none, boost::none), p, q);
p.errorVector(q, boost::none, actual);
EXPECT(assert_equal(expected, actual, 1e-9));
}
{
expected = numericalDerivative22<Vector2, Unit3, Unit3>(
boost::bind(&Unit3::errorVector, _1, _2, boost::none, boost::none), p, r);
p.errorVector(r, boost::none, actual);
EXPECT(assert_equal(expected, actual, 1e-9));
}
}
//*******************************************************************************
TEST(Unit3, distance) {
Unit3 p(1, 0, 0), q = p.retract(Vector2(0.5, 0)), //
@ -155,107 +232,211 @@ TEST(Unit3, distance) {
}
//*******************************************************************************
TEST(Unit3, localCoordinates) {
{
Unit3 p, q;
Vector2 expected = Vector2::Zero();
Vector2 actual = p.localCoordinates(q);
TEST(Unit3, localCoordinates0) {
Unit3 p;
Vector actual = p.localCoordinates(p);
EXPECT(assert_equal(zero(2), actual, 1e-8));
EXPECT(assert_equal(q, p.retract(expected), 1e-8));
}
{
Unit3 p, q(1, 6.12385e-21, 0);
Vector2 expected = Vector2::Zero();
Vector2 actual = p.localCoordinates(q);
EXPECT(assert_equal(zero(2), actual, 1e-8));
EXPECT(assert_equal(q, p.retract(expected), 1e-8));
}
{
Unit3 p, q(-1, 0, 0);
Vector2 expected(M_PI, 0);
Vector2 actual = p.localCoordinates(q);
EXPECT(assert_equal(expected, actual, 1e-8));
EXPECT(assert_equal(q, p.retract(expected), 1e-8));
}
{
Unit3 p, q(0, 1, 0);
Vector2 expected(0,-M_PI_2);
Vector2 actual = p.localCoordinates(q);
EXPECT(assert_equal(expected, actual, 1e-8));
EXPECT(assert_equal(q, p.retract(expected), 1e-8));
}
{
Unit3 p, q(0, -1, 0);
Vector2 expected(0, M_PI_2);
Vector2 actual = p.localCoordinates(q);
EXPECT(assert_equal(expected, actual, 1e-8));
EXPECT(assert_equal(q, p.retract(expected), 1e-8));
}
{
Unit3 p(0,1,0), q(0,-1,0);
Vector2 actual = p.localCoordinates(q);
EXPECT(assert_equal(q, p.retract(actual), 1e-8));
}
{
Unit3 p(0,0,1), q(0,0,-1);
Vector2 actual = p.localCoordinates(q);
EXPECT(assert_equal(q, p.retract(actual), 1e-8));
}
double twist = 1e-4;
{
Unit3 p(0, 1, 0), q(0 - twist, -1 + twist, 0);
Vector2 actual = p.localCoordinates(q);
EXPECT(actual(0) < 1e-2);
EXPECT(actual(1) > M_PI - 1e-2)
}
{
Unit3 p(0, 1, 0), q(0 + twist, -1 - twist, 0);
Vector2 actual = p.localCoordinates(q);
EXPECT(actual(0) < 1e-2);
EXPECT(actual(1) < -M_PI + 1e-2)
}
}
//*******************************************************************************
TEST(Unit3, localCoordinates1) {
Unit3 p, q(1, 6.12385e-21, 0);
Vector actual = p.localCoordinates(q);
CHECK(assert_equal(zero(2), actual, 1e-8));
}
//*******************************************************************************
TEST(Unit3, localCoordinates2) {
Unit3 p, q(-1, 0, 0);
Vector expected = (Vector(2) << M_PI, 0).finished();
Vector actual = p.localCoordinates(q);
CHECK(assert_equal(expected, actual, 1e-8));
}
//*******************************************************************************
// Wrapper to make basis return a vector6 so we can test numerical derivatives.
Vector6 BasisTest(const Unit3& p, OptionalJacobian<6, 2> H) {
Matrix32 B = p.basis(H);
Vector6 B_vec;
B_vec << B;
return B_vec;
}
TEST(Unit3, basis) {
Unit3 p;
Matrix32 expected;
expected << 0, 0, 0, -1, 1, 0;
Matrix actual = p.basis();
EXPECT(assert_equal(expected, actual, 1e-8));
Unit3 p(0.1, -0.2, 0.9);
Matrix expected(3, 2);
expected << 0.0, -0.994169047, 0.97618706,
-0.0233922129, 0.216930458, 0.105264958;
Matrix62 actualH;
Matrix actual = p.basis(actualH);
EXPECT(assert_equal(expected, actual, 1e-6));
Matrix62 expectedH = numericalDerivative11<Vector6, Unit3>(
boost::bind(BasisTest, _1, boost::none), p);
EXPECT(assert_equal(expectedH, actualH, 1e-8));
}
//*******************************************************************************
/// Check the basis derivatives of a bunch of random Unit3s.
TEST(Unit3, basis_derivatives) {
int num_tests = 100;
boost::mt19937 rng(42);
for (int i = 0; i < num_tests; i++) {
Unit3 p = Unit3::Random(rng);
Matrix62 actualH;
p.basis(actualH);
Matrix62 expectedH = numericalDerivative11<Vector6, Unit3>(
boost::bind(BasisTest, _1, boost::none), p);
EXPECT(assert_equal(expectedH, actualH, 1e-8));
}
}
//*******************************************************************************
TEST(Unit3, retract) {
{
Unit3 p;
Vector2 v(0.5, 0);
Vector v(2);
v << 0.5, 0;
Unit3 expected(0.877583, 0, 0.479426);
Unit3 actual = p.retract(v);
EXPECT(assert_equal(expected, actual, 1e-6));
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
}
{
Unit3 p;
Vector2 v(0, 0);
Unit3 actual = p.retract(v);
EXPECT(assert_equal(p, actual, 1e-6));
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
}
}
//*******************************************************************************
TEST(Unit3, retract_expmap) {
Unit3 p;
Vector2 v((M_PI / 2.0), 0);
Vector v(2);
v << (M_PI / 2.0), 0;
Unit3 expected(Point3(0, 0, 1));
Unit3 actual = p.retract(v);
EXPECT(assert_equal(expected, actual, 1e-8));
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
}
//*******************************************************************************
/// Returns a random vector
inline static Vector randomVector(const Vector& minLimits,
const Vector& maxLimits) {
// Get the number of dimensions and create the return vector
size_t numDims = dim(minLimits);
Vector vector = zero(numDims);
// Create the random vector
for (size_t i = 0; i < numDims; i++) {
double range = maxLimits(i) - minLimits(i);
vector(i) = (((double) rand()) / RAND_MAX) * range + minLimits(i);
}
return vector;
}
//*******************************************************************************
// Let x and y be two Unit3's.
// The equality x.localCoordinates(x.retract(v)) == v should hold.
TEST(Unit3, localCoordinates_retract) {
size_t numIterations = 10000;
Vector minSphereLimit = Vector3(-1.0, -1.0, -1.0), maxSphereLimit =
Vector3(1.0, 1.0, 1.0);
Vector minXiLimit = Vector2(-1.0, -1.0), maxXiLimit = Vector2(1.0, 1.0);
for (size_t i = 0; i < numIterations; i++) {
// Sleep for the random number generator (TODO?: Better create all of them first).
// boost::this_thread::sleep(boost::posix_time::milliseconds(0));
// Create the two Unit3s.
// NOTE: You can not create two totally random Unit3's because you cannot always compute
// between two any Unit3's. (For instance, they might be at the different sides of the circle).
Unit3 s1(Point3(randomVector(minSphereLimit, maxSphereLimit)));
// Unit3 s2 (Point3(randomVector(minSphereLimit, maxSphereLimit)));
Vector v12 = randomVector(minXiLimit, maxXiLimit);
Unit3 s2 = s1.retract(v12);
// Check if the local coordinates and retract return the same results.
Vector actual_v12 = s1.localCoordinates(s2);
EXPECT(assert_equal(v12, actual_v12, 1e-3));
Unit3 actual_s2 = s1.retract(actual_v12);
EXPECT(assert_equal(s2, actual_s2, 1e-3));
}
}
//*******************************************************************************
// Let x and y be two Unit3's.
// The equality x.localCoordinates(x.retract(v)) == v should hold.
TEST(Unit3, localCoordinates_retract_expmap) {
size_t numIterations = 10000;
Vector minSphereLimit = Vector3(-1.0, -1.0, -1.0), maxSphereLimit =
Vector3(1.0, 1.0, 1.0);
Vector minXiLimit = (Vector(2) << -M_PI, -M_PI).finished(), maxXiLimit = (Vector(2) << M_PI, M_PI).finished();
for (size_t i = 0; i < numIterations; i++) {
// Sleep for the random number generator (TODO?: Better create all of them first).
// boost::this_thread::sleep(boost::posix_time::milliseconds(0));
// Create the two Unit3s.
// Unlike the above case, we can use any two Unit3's.
Unit3 s1(Point3(randomVector(minSphereLimit, maxSphereLimit)));
// Unit3 s2 (Point3(randomVector(minSphereLimit, maxSphereLimit)));
Vector v12 = randomVector(minXiLimit, maxXiLimit);
// Magnitude of the rotation can be at most pi
if (v12.norm() > M_PI)
v12 = v12 / M_PI;
Unit3 s2 = s1.retract(v12);
// Check if the local coordinates and retract return the same results.
Vector actual_v12 = s1.localCoordinates(s2);
EXPECT(assert_equal(v12, actual_v12, 1e-3));
Unit3 actual_s2 = s1.retract(actual_v12);
EXPECT(assert_equal(s2, actual_s2, 1e-3));
}
}
//*******************************************************************************
//TEST( Pose2, between )
//{
// // <
// //
// // ^
// //
// // *--0--*--*
// Pose2 gT1(M_PI/2.0, Point2(1,2)); // robot at (1,2) looking towards y
// Pose2 gT2(M_PI, Point2(-1,4)); // robot at (-1,4) loooking at negative x
//
// Matrix actualH1,actualH2;
// Pose2 expected(M_PI/2.0, Point2(2,2));
// Pose2 actual1 = gT1.between(gT2);
// Pose2 actual2 = gT1.between(gT2,actualH1,actualH2);
// EXPECT(assert_equal(expected,actual1));
// EXPECT(assert_equal(expected,actual2));
//
// Matrix expectedH1 = (Matrix(3,3) <<
// 0.0,-1.0,-2.0,
// 1.0, 0.0,-2.0,
// 0.0, 0.0,-1.0
// );
// Matrix numericalH1 = numericalDerivative21<Pose2,Pose2,Pose2>(testing::between, gT1, gT2);
// EXPECT(assert_equal(expectedH1,actualH1));
// EXPECT(assert_equal(numericalH1,actualH1));
// // Assert H1 = -AdjointMap(between(p2,p1)) as in doc/math.lyx
// EXPECT(assert_equal(-gT2.between(gT1).AdjointMap(),actualH1));
//
// Matrix expectedH2 = (Matrix(3,3) <<
// 1.0, 0.0, 0.0,
// 0.0, 1.0, 0.0,
// 0.0, 0.0, 1.0
// );
// Matrix numericalH2 = numericalDerivative22<Pose2,Pose2,Pose2>(testing::between, gT1, gT2);
// EXPECT(assert_equal(expectedH2,actualH2));
// EXPECT(assert_equal(numericalH2,actualH2));
//
//}
//*******************************************************************************
TEST(Unit3, Random) {
boost::mt19937 rng(42);
@ -267,26 +448,6 @@ TEST(Unit3, Random) {
EXPECT(assert_equal(expectedMean,actualMean,0.1));
}
//*******************************************************************************
// New test that uses Unit3::Random
TEST(Unit3, localCoordinates_retract) {
boost::mt19937 rng(42);
size_t numIterations = 10000;
for (size_t i = 0; i < numIterations; i++) {
// Create two random Unit3s
const Unit3 s1 = Unit3::Random(rng);
const Unit3 s2 = Unit3::Random(rng);
// Check that they are not at opposite ends of the sphere, which is ill defined
if (s1.unitVector().dot(s2.unitVector())<-0.9) continue;
// Check if the local coordinates and retract return consistent results.
Vector v12 = s1.localCoordinates(s2);
Unit3 actual_s2 = s1.retract(v12);
EXPECT(assert_equal(s2, actual_s2, 1e-9));
}
}
//*************************************************************************
TEST (Unit3, FromPoint3) {
Matrix actualH;
@ -298,12 +459,42 @@ TEST (Unit3, FromPoint3) {
EXPECT(assert_equal(expectedH, actualH, 1e-8));
}
/* ************************************************************************* */
TEST(actualH, Serialization) {
Unit3 p(0, 1, 0);
EXPECT(serializationTestHelpers::equalsObj(p));
EXPECT(serializationTestHelpers::equalsXML(p));
EXPECT(serializationTestHelpers::equalsBinary(p));
//*******************************************************************************
TEST(Unit3, ErrorBetweenFactor) {
std::vector<Unit3> data = {Unit3(1.0, 0.0, 0.0), Unit3(0.0, 0.0, 1.0)};
NonlinearFactorGraph graph;
Values initial_values;
// Add prior factors.
SharedNoiseModel R_prior = noiseModel::Unit::Create(2);
for (int i = 0; i < data.size(); i++) {
graph.add(PriorFactor<Unit3>(U(i), data[i], R_prior));
}
// Add process factors using the dot product error function.
SharedNoiseModel R_process = noiseModel::Isotropic::Sigma(2, 0.01);
for (int i = 0; i < data.size() - 1; i++) {
Expression<Vector2> exp(Expression<Unit3>(U(i)), &Unit3::errorVector, Expression<Unit3>(U(i + 1)));
graph.addExpressionFactor<Vector2>(R_process, Vector2::Zero(), exp);
}
// Add initial values. Since there is no identity, just pick something.
for (int i = 0; i < data.size(); i++) {
initial_values.insert(U(i), Unit3(0.0, 1.0, 0.0));
}
Values values = GaussNewtonOptimizer(graph, initial_values).optimize();
// Check that the y-value is very small for each.
for (int i = 0; i < data.size(); i++) {
EXPECT(assert_equal(0.0, values.at<Unit3>(U(i)).unitVector().y(), 1e-3));
}
// Check that the dot product between variables is close to 1.
for (int i = 0; i < data.size() - 1; i++) {
EXPECT(assert_equal(1.0, values.at<Unit3>(U(i)).dot(values.at<Unit3>(U(i + 1))), 1e-2));
}
}
/* ************************************************************************* */