Merge branch 'develop' into hybrid/tests

release/4.3a0
Varun Agrawal 2022-12-30 10:13:30 +05:30
commit cf46c36862
37 changed files with 897 additions and 354 deletions

View File

@ -340,6 +340,10 @@ class Rot3 {
gtsam::Point3 rotate(const gtsam::Point3& p) const;
gtsam::Point3 unrotate(const gtsam::Point3& p) const;
// Group action on Unit3
gtsam::Unit3 rotate(const gtsam::Unit3& p) const;
gtsam::Unit3 unrotate(const gtsam::Unit3& p) const;
// Standard Interface
static gtsam::Rot3 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot3& p);

View File

@ -21,6 +21,7 @@
#include <gtsam/base/utilities.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/inference/Conditional-inst.h>
#include <gtsam/linear/GaussianFactorGraph.h>
@ -36,20 +37,17 @@ GaussianMixture::GaussianMixture(
conditionals_(conditionals) {}
/* *******************************************************************************/
const GaussianMixture::Conditionals &GaussianMixture::conditionals() {
const GaussianMixture::Conditionals &GaussianMixture::conditionals() const {
return conditionals_;
}
/* *******************************************************************************/
GaussianMixture GaussianMixture::FromConditionals(
GaussianMixture::GaussianMixture(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const std::vector<GaussianConditional::shared_ptr> &conditionalsList) {
Conditionals dt(discreteParents, conditionalsList);
return GaussianMixture(continuousFrontals, continuousParents, discreteParents,
dt);
}
const std::vector<GaussianConditional::shared_ptr> &conditionalsList)
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
Conditionals(discreteParents, conditionalsList)) {}
/* *******************************************************************************/
GaussianMixture::Sum GaussianMixture::add(
@ -128,6 +126,36 @@ void GaussianMixture::print(const std::string &s,
});
}
/* ************************************************************************* */
KeyVector GaussianMixture::continuousParents() const {
// Get all parent keys:
const auto range = parents();
KeyVector continuousParentKeys(range.begin(), range.end());
// Loop over all discrete keys:
for (const auto &discreteKey : discreteKeys()) {
const Key key = discreteKey.first;
// remove that key from continuousParentKeys:
continuousParentKeys.erase(std::remove(continuousParentKeys.begin(),
continuousParentKeys.end(), key),
continuousParentKeys.end());
}
return continuousParentKeys;
}
/* ************************************************************************* */
boost::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
const VectorValues &frontals) const {
// TODO(dellaert): check that values has all frontals
const DiscreteKeys discreteParentKeys = discreteKeys();
const KeyVector continuousParentKeys = continuousParents();
const GaussianMixtureFactor::Factors likelihoods(
conditionals(), [&](const GaussianConditional::shared_ptr &conditional) {
return conditional->likelihood(frontals);
});
return boost::make_shared<GaussianMixtureFactor>(
continuousParentKeys, discreteParentKeys, likelihoods);
}
/* ************************************************************************* */
std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &dkeys) {
std::set<DiscreteKey> s;

View File

@ -29,6 +29,8 @@
namespace gtsam {
class GaussianMixtureFactor;
/**
* @brief A conditional of gaussian mixtures indexed by discrete variables, as
* part of a Bayes Network. This is the result of the elimination of a
@ -112,21 +114,11 @@ class GTSAM_EXPORT GaussianMixture
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
*/
static This FromConditionals(
GaussianMixture(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const std::vector<GaussianConditional::shared_ptr> &conditionals);
/// @}
/// @name Standard API
/// @{
GaussianConditional::shared_ptr operator()(
const DiscreteValues &discreteValues) const;
/// Returns the total number of continuous components
size_t nrComponents() const;
/// @}
/// @name Testable
/// @{
@ -140,9 +132,25 @@ class GTSAM_EXPORT GaussianMixture
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
/// @}
/// @name Standard API
/// @{
GaussianConditional::shared_ptr operator()(
const DiscreteValues &discreteValues) const;
/// Returns the total number of continuous components
size_t nrComponents() const;
/// Returns the continuous keys among the parents.
KeyVector continuousParents() const;
// Create a likelihood factor for a Gaussian mixture, return a Mixture factor
// on the parents.
boost::shared_ptr<GaussianMixtureFactor> likelihood(
const VectorValues &frontals) const;
/// Getter for the underlying Conditionals DecisionTree
const Conditionals &conditionals();
const Conditionals &conditionals() const;
/**
* @brief Compute error of the GaussianMixture as a tree.
@ -181,6 +189,7 @@ class GTSAM_EXPORT GaussianMixture
* @return Sum
*/
Sum add(const Sum &sum) const;
/// @}
};
/// Return the DiscreteKey vector as a set.

View File

@ -35,16 +35,19 @@ GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
/* *******************************************************************************/
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
const This *e = dynamic_cast<const This *>(&lf);
return e != nullptr && Base::equals(*e, tol);
}
if (e == nullptr) return false;
/* *******************************************************************************/
GaussianMixtureFactor GaussianMixtureFactor::FromFactors(
const KeyVector &continuousKeys, const DiscreteKeys &discreteKeys,
const std::vector<GaussianFactor::shared_ptr> &factors) {
Factors dt(discreteKeys, factors);
// This will return false if either factors_ is empty or e->factors_ is empty,
// but not if both are empty or both are not empty:
if (factors_.empty() ^ e->factors_.empty()) return false;
return GaussianMixtureFactor(continuousKeys, discreteKeys, dt);
// Check the base and the factors:
return Base::equals(*e, tol) &&
factors_.equals(e->factors_,
[tol](const GaussianFactor::shared_ptr &f1,
const GaussianFactor::shared_ptr &f2) {
return f1->equals(*f2, tol);
});
}
/* *******************************************************************************/
@ -52,18 +55,22 @@ void GaussianMixtureFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
HybridFactor::print(s, formatter);
std::cout << "{\n";
factors_.print(
"", [&](Key k) { return formatter(k); },
[&](const GaussianFactor::shared_ptr &gf) -> std::string {
RedirectCout rd;
std::cout << ":\n";
if (gf && !gf->empty()) {
gf->print("", formatter);
return rd.str();
} else {
return "nullptr";
}
});
if (factors_.empty()) {
std::cout << " empty" << std::endl;
} else {
factors_.print(
"", [&](Key k) { return formatter(k); },
[&](const GaussianFactor::shared_ptr &gf) -> std::string {
RedirectCout rd;
std::cout << ":\n";
if (gf && !gf->empty()) {
gf->print("", formatter);
return rd.str();
} else {
return "nullptr";
}
});
}
std::cout << "}" << std::endl;
}

View File

@ -93,19 +93,16 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* @brief Construct a new GaussianMixtureFactor object using a vector of
* GaussianFactor shared pointers.
*
* @param keys Vector of keys for continuous factors.
* @param continuousKeys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of gaussian factor shared pointers.
*/
GaussianMixtureFactor(const KeyVector &keys, const DiscreteKeys &discreteKeys,
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const std::vector<GaussianFactor::shared_ptr> &factors)
: GaussianMixtureFactor(keys, discreteKeys,
: GaussianMixtureFactor(continuousKeys, discreteKeys,
Factors(discreteKeys, factors)) {}
static This FromFactors(
const KeyVector &continuousKeys, const DiscreteKeys &discreteKeys,
const std::vector<GaussianFactor::shared_ptr> &factors);
/// @}
/// @name Testable
/// @{

View File

@ -36,7 +36,7 @@ DecisionTreeFactor::shared_ptr HybridBayesNet::discreteConditionals() const {
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
// Convert to a DecisionTreeFactor and add it to the main factor.
DecisionTreeFactor f(*conditional->asDiscreteConditional());
DecisionTreeFactor f(*conditional->asDiscrete());
dtFactor = dtFactor * f;
}
}
@ -109,7 +109,7 @@ void HybridBayesNet::updateDiscreteConditionals(
HybridConditional::shared_ptr conditional = this->at(i);
if (conditional->isDiscrete()) {
// std::cout << demangle(typeid(conditional).name()) << std::endl;
auto discrete = conditional->asDiscreteConditional();
auto discrete = conditional->asDiscrete();
KeyVector frontals(discrete->frontals().begin(),
discrete->frontals().end());
@ -152,13 +152,10 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
// Go through all the conditionals in the
// Bayes Net and prune them as per decisionTree.
for (auto &&conditional : *this) {
if (conditional->isHybrid()) {
GaussianMixture::shared_ptr gaussianMixture = conditional->asMixture();
if (auto gm = conditional->asMixture()) {
// Make a copy of the Gaussian mixture and prune it!
auto prunedGaussianMixture =
boost::make_shared<GaussianMixture>(*gaussianMixture);
prunedGaussianMixture->prune(*decisionTree);
auto prunedGaussianMixture = boost::make_shared<GaussianMixture>(*gm);
prunedGaussianMixture->prune(*decisionTree); // imperative :-(
// Type-erase and add to the pruned Bayes Net fragment.
prunedBayesNetFragment.push_back(
@ -185,7 +182,7 @@ GaussianConditional::shared_ptr HybridBayesNet::atGaussian(size_t i) const {
/* ************************************************************************* */
DiscreteConditional::shared_ptr HybridBayesNet::atDiscrete(size_t i) const {
return at(i)->asDiscreteConditional();
return at(i)->asDiscrete();
}
/* ************************************************************************* */
@ -193,16 +190,13 @@ GaussianBayesNet HybridBayesNet::choose(
const DiscreteValues &assignment) const {
GaussianBayesNet gbn;
for (auto &&conditional : *this) {
if (conditional->isHybrid()) {
if (auto gm = conditional->asMixture()) {
// If conditional is hybrid, select based on assignment.
GaussianMixture gm = *conditional->asMixture();
gbn.push_back(gm(assignment));
} else if (conditional->isContinuous()) {
gbn.push_back((*gm)(assignment));
} else if (auto gc = conditional->asGaussian()) {
// If continuous only, add Gaussian conditional.
gbn.push_back((conditional->asGaussian()));
} else if (conditional->isDiscrete()) {
gbn.push_back(gc);
} else if (auto dc = conditional->asDiscrete()) {
// If conditional is discrete-only, we simply continue.
continue;
}
@ -217,20 +211,20 @@ HybridValues HybridBayesNet::optimize() const {
DiscreteBayesNet discrete_bn;
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
discrete_bn.push_back(conditional->asDiscreteConditional());
discrete_bn.push_back(conditional->asDiscrete());
}
}
DiscreteValues mpe = DiscreteFactorGraph(discrete_bn).optimize();
// Given the MPE, compute the optimal continuous values.
GaussianBayesNet gbn = this->choose(mpe);
return HybridValues(mpe, gbn.optimize());
GaussianBayesNet gbn = choose(mpe);
return HybridValues(gbn.optimize(), mpe);
}
/* ************************************************************************* */
VectorValues HybridBayesNet::optimize(const DiscreteValues &assignment) const {
GaussianBayesNet gbn = this->choose(assignment);
GaussianBayesNet gbn = choose(assignment);
// Check if there exists a nullptr in the GaussianBayesNet
// If yes, return an empty VectorValues
@ -240,6 +234,30 @@ VectorValues HybridBayesNet::optimize(const DiscreteValues &assignment) const {
return gbn.optimize();
}
/* ************************************************************************* */
double HybridBayesNet::evaluate(const HybridValues &values) const {
const DiscreteValues &discreteValues = values.discrete();
const VectorValues &continuousValues = values.continuous();
double logDensity = 0.0, probability = 1.0;
// Iterate over each conditional.
for (auto &&conditional : *this) {
if (auto gm = conditional->asMixture()) {
const auto component = (*gm)(discreteValues);
logDensity += component->logDensity(continuousValues);
} else if (auto gc = conditional->asGaussian()) {
// If continuous only, evaluate the probability and multiply.
logDensity += gc->logDensity(continuousValues);
} else if (auto dc = conditional->asDiscrete()) {
// Conditional is discrete-only, so return its probability.
probability *= dc->operator()(discreteValues);
}
}
return probability * exp(logDensity);
}
/* ************************************************************************* */
HybridValues HybridBayesNet::sample(const HybridValues &given,
std::mt19937_64 *rng) const {
@ -247,7 +265,7 @@ HybridValues HybridBayesNet::sample(const HybridValues &given,
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
// If conditional is discrete-only, we add to the discrete Bayes net.
dbn.push_back(conditional->asDiscreteConditional());
dbn.push_back(conditional->asDiscrete());
}
}
// Sample a discrete assignment.
@ -256,7 +274,7 @@ HybridValues HybridBayesNet::sample(const HybridValues &given,
GaussianBayesNet gbn = choose(assignment);
// Sample from the Gaussian Bayes net.
VectorValues sample = gbn.sample(given.continuous(), rng);
return {assignment, sample};
return {sample, assignment};
}
/* ************************************************************************* */
@ -278,7 +296,7 @@ HybridValues HybridBayesNet::sample() const {
/* ************************************************************************* */
double HybridBayesNet::error(const VectorValues &continuousValues,
const DiscreteValues &discreteValues) const {
GaussianBayesNet gbn = this->choose(discreteValues);
GaussianBayesNet gbn = choose(discreteValues);
return gbn.error(continuousValues);
}
@ -289,23 +307,20 @@ AlgebraicDecisionTree<Key> HybridBayesNet::error(
// Iterate over each conditional.
for (auto &&conditional : *this) {
if (conditional->isHybrid()) {
if (auto gm = conditional->asMixture()) {
// If conditional is hybrid, select based on assignment and compute error.
GaussianMixture::shared_ptr gm = conditional->asMixture();
AlgebraicDecisionTree<Key> conditional_error =
gm->error(continuousValues);
error_tree = error_tree + conditional_error;
} else if (conditional->isContinuous()) {
} else if (auto gc = conditional->asGaussian()) {
// If continuous only, get the (double) error
// and add it to the error_tree
double error = conditional->asGaussian()->error(continuousValues);
double error = gc->error(continuousValues);
// Add the computed error to every leaf of the error tree.
error_tree = error_tree.apply(
[error](double leaf_value) { return leaf_value + error; });
} else if (conditional->isDiscrete()) {
} else if (auto dc = conditional->asDiscrete()) {
// Conditional is discrete-only, we skip.
continue;
}

View File

@ -69,10 +69,40 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
/// Add HybridConditional to Bayes Net
using Base::add;
/// Add a Gaussian Mixture to the Bayes Net.
void addMixture(const GaussianMixture::shared_ptr &ptr) {
push_back(HybridConditional(ptr));
}
/// Add a Gaussian conditional to the Bayes Net.
void addGaussian(const GaussianConditional::shared_ptr &ptr) {
push_back(HybridConditional(ptr));
}
/// Add a discrete conditional to the Bayes Net.
void add(const DiscreteKey &key, const std::string &table) {
push_back(
HybridConditional(boost::make_shared<DiscreteConditional>(key, table)));
void addDiscrete(const DiscreteConditional::shared_ptr &ptr) {
push_back(HybridConditional(ptr));
}
/// Add a Gaussian Mixture to the Bayes Net.
template <typename... T>
void emplaceMixture(T &&...args) {
push_back(HybridConditional(
boost::make_shared<GaussianMixture>(std::forward<T>(args)...)));
}
/// Add a Gaussian conditional to the Bayes Net.
template <typename... T>
void emplaceGaussian(T &&...args) {
push_back(HybridConditional(
boost::make_shared<GaussianConditional>(std::forward<T>(args)...)));
}
/// Add a discrete conditional to the Bayes Net.
template <typename... T>
void emplaceDiscrete(T &&...args) {
push_back(HybridConditional(
boost::make_shared<DiscreteConditional>(std::forward<T>(args)...)));
}
using Base::push_back;
@ -95,6 +125,14 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
*/
GaussianBayesNet choose(const DiscreteValues &assignment) const;
/// Evaluate hybrid probability density for given HybridValues.
double evaluate(const HybridValues &values) const;
/// Evaluate hybrid probability density for given HybridValues, sugar.
double operator()(const HybridValues &values) const {
return evaluate(values);
}
/**
* @brief Solve the HybridBayesNet by first computing the MPE of all the
* discrete variables and then optimizing the continuous variables based on

View File

@ -49,7 +49,7 @@ HybridValues HybridBayesTree::optimize() const {
// The root should be discrete only, we compute the MPE
if (root_conditional->isDiscrete()) {
dbn.push_back(root_conditional->asDiscreteConditional());
dbn.push_back(root_conditional->asDiscrete());
mpe = DiscreteFactorGraph(dbn).optimize();
} else {
throw std::runtime_error(
@ -58,7 +58,7 @@ HybridValues HybridBayesTree::optimize() const {
}
VectorValues values = optimize(mpe);
return HybridValues(mpe, values);
return HybridValues(values, mpe);
}
/* ************************************************************************* */
@ -162,7 +162,7 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
/* ************************************************************************* */
void HybridBayesTree::prune(const size_t maxNrLeaves) {
auto decisionTree =
this->roots_.at(0)->conditional()->asDiscreteConditional();
this->roots_.at(0)->conditional()->asDiscrete();
DecisionTreeFactor prunedDecisionTree = decisionTree->prune(maxNrLeaves);
decisionTree->root_ = prunedDecisionTree.root_;

View File

@ -131,34 +131,29 @@ class GTSAM_EXPORT HybridConditional
/**
* @brief Return HybridConditional as a GaussianMixture
*
* @return GaussianMixture::shared_ptr
* @return nullptr if not a mixture
* @return GaussianMixture::shared_ptr otherwise
*/
GaussianMixture::shared_ptr asMixture() {
if (!isHybrid()) throw std::invalid_argument("Not a mixture");
return boost::static_pointer_cast<GaussianMixture>(inner_);
return boost::dynamic_pointer_cast<GaussianMixture>(inner_);
}
/**
* @brief Return HybridConditional as a GaussianConditional
*
* @return GaussianConditional::shared_ptr
* @return nullptr if not a GaussianConditional
* @return GaussianConditional::shared_ptr otherwise
*/
GaussianConditional::shared_ptr asGaussian() {
if (!isContinuous())
throw std::invalid_argument("Not a continuous conditional");
return boost::static_pointer_cast<GaussianConditional>(inner_);
return boost::dynamic_pointer_cast<GaussianConditional>(inner_);
}
/**
* @brief Return conditional as a DiscreteConditional
*
* @return nullptr if not a DiscreteConditional
* @return DiscreteConditional::shared_ptr
*/
DiscreteConditional::shared_ptr asDiscreteConditional() {
if (!isDiscrete())
throw std::invalid_argument("Not a discrete conditional");
return boost::static_pointer_cast<DiscreteConditional>(inner_);
DiscreteConditional::shared_ptr asDiscrete() {
return boost::dynamic_pointer_cast<DiscreteConditional>(inner_);
}
/// @}

View File

@ -524,6 +524,7 @@ double HybridGaussianFactorGraph::probPrime(
const VectorValues &continuousValues,
const DiscreteValues &discreteValues) const {
double error = this->error(continuousValues, discreteValues);
// NOTE: The 0.5 term is handled by each factor
return std::exp(-error);
}
@ -531,8 +532,10 @@ double HybridGaussianFactorGraph::probPrime(
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::probPrime(
const VectorValues &continuousValues) const {
AlgebraicDecisionTree<Key> error_tree = this->error(continuousValues);
AlgebraicDecisionTree<Key> prob_tree =
error_tree.apply([](double error) { return exp(-error); });
AlgebraicDecisionTree<Key> prob_tree = error_tree.apply([](double error) {
// NOTE: The 0.5 term is handled by each factor
return exp(-error);
});
return prob_tree;
}

View File

@ -219,94 +219,6 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
double probPrime(const VectorValues& continuousValues,
const DiscreteValues& discreteValues) const;
/**
* @brief Helper method to compute the VectorValues solution for the
* continuous variables for each discrete mode.
* Used as a helper to compute q(\mu | M, Z) which is used by
* both P(X | M, Z) and P(M | Z).
*
* @tparam BAYES Template on the type of Bayes graph, either a bayes net or a
* bayes tree.
* @param discrete_keys The discrete keys which form all the modes.
* @param continuousBayesNet The Bayes Net/Tree representing the continuous
* eliminated variables.
* @param assignments List of all discrete assignments to create the final
* decision tree.
* @return DecisionTree<Key, VectorValues::shared_ptr>
*/
template <typename BAYES>
DecisionTree<Key, VectorValues::shared_ptr> continuousDelta(
const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BAYES>& continuousBayesNet,
const std::vector<DiscreteValues>& assignments) const {
// Create a decision tree of all the different VectorValues
std::vector<VectorValues::shared_ptr> vector_values;
for (const DiscreteValues& assignment : assignments) {
VectorValues values = continuousBayesNet->optimize(assignment);
vector_values.push_back(boost::make_shared<VectorValues>(values));
}
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
vector_values);
return delta_tree;
}
/**
* @brief Compute the unnormalized probabilities of the continuous variables
* for each of the modes.
*
* @tparam BAYES Template on the type of Bayes graph, either a bayes net or a
* bayes tree.
* @param discrete_keys The discrete keys which form all the modes.
* @param continuousBayesNet The Bayes Net representing the continuous
* eliminated variables.
* @return AlgebraicDecisionTree<Key>
*/
template <typename BAYES>
AlgebraicDecisionTree<Key> continuousProbPrimes(
const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BAYES>& continuousBayesNet) const {
// Generate all possible assignments.
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(discrete_keys);
// Save a copy of the original discrete key ordering
DiscreteKeys reversed_discrete_keys(discrete_keys);
// Reverse discrete keys order for correct tree construction
std::reverse(reversed_discrete_keys.begin(), reversed_discrete_keys.end());
// Create a decision tree of all the different VectorValues
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
this->continuousDelta(reversed_discrete_keys, continuousBayesNet,
assignments);
// Get the probPrime tree with the correct leaf probabilities
std::vector<double> probPrimes;
for (const DiscreteValues& assignment : assignments) {
VectorValues delta = *delta_tree(assignment);
// If VectorValues is empty, it means this is a pruned branch.
// Set thr probPrime to 0.0.
if (delta.size() == 0) {
probPrimes.push_back(0.0);
continue;
}
// Compute the error given the delta and the assignment.
double error = this->error(delta, assignment);
probPrimes.push_back(exp(-error));
}
AlgebraicDecisionTree<Key> probPrimeTree(reversed_discrete_keys,
probPrimes);
return probPrimeTree;
}
std::pair<Ordering, Ordering> separateContinuousDiscreteOrdering(
const Ordering& ordering) const;
/**
* @brief Return a Colamd constrained ordering where the discrete keys are
* eliminated after the continuous keys.

View File

@ -37,12 +37,12 @@ namespace gtsam {
*/
class GTSAM_EXPORT HybridValues {
private:
// DiscreteValue stored the discrete components of the HybridValues.
DiscreteValues discrete_;
// VectorValue stored the continuous components of the HybridValues.
VectorValues continuous_;
// DiscreteValue stored the discrete components of the HybridValues.
DiscreteValues discrete_;
public:
/// @name Standard Constructors
/// @{
@ -51,8 +51,8 @@ class GTSAM_EXPORT HybridValues {
HybridValues() = default;
/// Construct from DiscreteValues and VectorValues.
HybridValues(const DiscreteValues& dv, const VectorValues& cv)
: discrete_(dv), continuous_(cv){};
HybridValues(const VectorValues& cv, const DiscreteValues& dv)
: continuous_(cv), discrete_(dv){};
/// @}
/// @name Testable
@ -62,15 +62,15 @@ class GTSAM_EXPORT HybridValues {
void print(const std::string& s = "HybridValues",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << ": \n";
discrete_.print(" Discrete", keyFormatter); // print discrete components
continuous_.print(" Continuous",
keyFormatter); // print continuous components
keyFormatter); // print continuous components
discrete_.print(" Discrete", keyFormatter); // print discrete components
};
/// equals required by Testable for unit testing
bool equals(const HybridValues& other, double tol = 1e-9) const {
return discrete_.equals(other.discrete_, tol) &&
continuous_.equals(other.continuous_, tol);
return continuous_.equals(other.continuous_, tol) &&
discrete_.equals(other.discrete_, tol);
}
/// @}
@ -78,10 +78,10 @@ class GTSAM_EXPORT HybridValues {
/// @{
/// Return the discrete MPE assignment
DiscreteValues discrete() const { return discrete_; }
const DiscreteValues& discrete() const { return discrete_; }
/// Return the delta update for the continuous vectors
VectorValues continuous() const { return continuous_; }
const VectorValues& continuous() const { return continuous_; }
/// Check whether a variable with key \c j exists in DiscreteValue.
bool existsDiscrete(Key j) { return (discrete_.find(j) != discrete_.end()); };
@ -96,7 +96,7 @@ class GTSAM_EXPORT HybridValues {
* the key \c j is already used.
* @param value The vector to be inserted.
* @param j The index with which the value will be associated. */
void insert(Key j, int value) { discrete_[j] = value; };
void insert(Key j, size_t value) { discrete_[j] = value; };
/** Insert a vector \c value with key \c j. Throws an invalid_argument
* exception if the key \c j is already used.
@ -130,8 +130,8 @@ class GTSAM_EXPORT HybridValues {
std::string html(
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::stringstream ss;
ss << this->discrete_.html(keyFormatter);
ss << this->continuous_.html(keyFormatter);
ss << this->discrete_.html(keyFormatter);
return ss.str();
};

View File

@ -6,10 +6,11 @@ namespace gtsam {
#include <gtsam/hybrid/HybridValues.h>
class HybridValues {
gtsam::DiscreteValues discrete() const;
gtsam::VectorValues continuous() const;
gtsam::DiscreteValues discrete() const;
HybridValues();
HybridValues(const gtsam::DiscreteValues &dv, const gtsam::VectorValues &cv);
HybridValues(const gtsam::VectorValues &cv, const gtsam::DiscreteValues &dv);
void print(string s = "HybridValues",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
@ -54,7 +55,7 @@ virtual class HybridDiscreteFactor {
#include <gtsam/hybrid/GaussianMixtureFactor.h>
class GaussianMixtureFactor : gtsam::HybridFactor {
static GaussianMixtureFactor FromFactors(
GaussianMixtureFactor(
const gtsam::KeyVector& continuousKeys,
const gtsam::DiscreteKeys& discreteKeys,
const std::vector<gtsam::GaussianFactor::shared_ptr>& factorsList);
@ -66,12 +67,13 @@ class GaussianMixtureFactor : gtsam::HybridFactor {
#include <gtsam/hybrid/GaussianMixture.h>
class GaussianMixture : gtsam::HybridFactor {
static GaussianMixture FromConditionals(
const gtsam::KeyVector& continuousFrontals,
const gtsam::KeyVector& continuousParents,
const gtsam::DiscreteKeys& discreteParents,
const std::vector<gtsam::GaussianConditional::shared_ptr>&
conditionalsList);
GaussianMixture(const gtsam::KeyVector& continuousFrontals,
const gtsam::KeyVector& continuousParents,
const gtsam::DiscreteKeys& discreteParents,
const std::vector<gtsam::GaussianConditional::shared_ptr>&
conditionalsList);
gtsam::GaussianMixtureFactor* likelihood(const gtsam::VectorValues &frontals) const;
void print(string s = "GaussianMixture\n",
const gtsam::KeyFormatter& keyFormatter =
@ -87,7 +89,6 @@ class HybridBayesTreeClique {
// double evaluate(const gtsam::HybridValues& values) const;
};
#include <gtsam/hybrid/HybridBayesTree.h>
class HybridBayesTree {
HybridBayesTree();
void print(string s = "HybridBayesTree\n",
@ -105,14 +106,43 @@ class HybridBayesTree {
gtsam::DefaultKeyFormatter) const;
};
#include <gtsam/hybrid/HybridBayesNet.h>
class HybridBayesNet {
HybridBayesNet();
void add(const gtsam::HybridConditional& s);
void addMixture(const gtsam::GaussianMixture* s);
void addGaussian(const gtsam::GaussianConditional* s);
void addDiscrete(const gtsam::DiscreteConditional* s);
void emplaceMixture(const gtsam::GaussianMixture& s);
void emplaceMixture(const gtsam::KeyVector& continuousFrontals,
const gtsam::KeyVector& continuousParents,
const gtsam::DiscreteKeys& discreteParents,
const std::vector<gtsam::GaussianConditional::shared_ptr>&
conditionalsList);
void emplaceGaussian(const gtsam::GaussianConditional& s);
void emplaceDiscrete(const gtsam::DiscreteConditional& s);
void emplaceDiscrete(const gtsam::DiscreteKey& key, string spec);
void emplaceDiscrete(const gtsam::DiscreteKey& key,
const gtsam::DiscreteKeys& parents, string spec);
void emplaceDiscrete(const gtsam::DiscreteKey& key,
const std::vector<gtsam::DiscreteKey>& parents,
string spec);
gtsam::GaussianMixture* atMixture(size_t i) const;
gtsam::GaussianConditional* atGaussian(size_t i) const;
gtsam::DiscreteConditional* atDiscrete(size_t i) const;
bool empty() const;
size_t size() const;
gtsam::KeySet keys() const;
const gtsam::HybridConditional* at(size_t i) const;
double evaluate(const gtsam::HybridValues& x) const;
gtsam::HybridValues optimize() const;
gtsam::HybridValues sample(const gtsam::HybridValues &given) const;
gtsam::HybridValues sample() const;
void print(string s = "HybridBayesNet\n",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
@ -139,9 +169,8 @@ class HybridGaussianFactorGraph {
void push_back(const gtsam::HybridBayesNet& bayesNet);
void push_back(const gtsam::HybridBayesTree& bayesTree);
void push_back(const gtsam::GaussianMixtureFactor* gmm);
void add(gtsam::DecisionTreeFactor* factor);
void add(gtsam::JacobianFactor* factor);
void push_back(gtsam::DecisionTreeFactor* factor);
void push_back(gtsam::JacobianFactor* factor);
bool empty() const;
void remove(size_t i);
@ -152,6 +181,12 @@ class HybridGaussianFactorGraph {
void print(string s = "") const;
bool equals(const gtsam::HybridGaussianFactorGraph& fg, double tol = 1e-9) const;
// evaluation
double error(const gtsam::VectorValues& continuousValues,
const gtsam::DiscreteValues& discreteValues) const;
double probPrime(const gtsam::VectorValues& continuousValues,
const gtsam::DiscreteValues& discreteValues) const;
gtsam::HybridBayesNet* eliminateSequential();
gtsam::HybridBayesNet* eliminateSequential(
gtsam::Ordering::OrderingType type);

View File

@ -57,7 +57,7 @@ inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
// keyFunc(1) to keyFunc(n+1)
for (size_t t = 1; t < n; t++) {
hfg.add(GaussianMixtureFactor::FromFactors(
hfg.add(GaussianMixtureFactor(
{keyFunc(t), keyFunc(t + 1)}, {{dKeyFunc(t), 2}},
{boost::make_shared<JacobianFactor>(keyFunc(t), I_3x3, keyFunc(t + 1),
I_3x3, Z_3x1),

View File

@ -20,6 +20,8 @@
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
@ -33,6 +35,7 @@ using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
using symbol_shorthand::Z;
/* ************************************************************************* */
/* Check construction of GaussianMixture P(x1 | x2, m1) as well as accessing a
@ -127,7 +130,59 @@ TEST(GaussianMixture, Error) {
assignment[M(1)] = 0;
EXPECT_DOUBLES_EQUAL(0.5, mixture.error(values, assignment), 1e-8);
assignment[M(1)] = 1;
EXPECT_DOUBLES_EQUAL(4.3252595155709335, mixture.error(values, assignment), 1e-8);
EXPECT_DOUBLES_EQUAL(4.3252595155709335, mixture.error(values, assignment),
1e-8);
}
/* ************************************************************************* */
// Create mode key: 0 is low-noise, 1 is high-noise.
static const Key modeKey = M(0);
static const DiscreteKey mode(modeKey, 2);
// Create a simple GaussianMixture
static GaussianMixture createSimpleGaussianMixture() {
// Create Gaussian mixture Z(0) = X(0) + noise.
// TODO(dellaert): making copies below is not ideal !
Matrix1 I = Matrix1::Identity();
const auto conditional0 = boost::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
const auto conditional1 = boost::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 3));
return GaussianMixture({Z(0)}, {X(0)}, {mode}, {conditional0, conditional1});
}
/* ************************************************************************* */
// Create a test for continuousParents.
TEST(GaussianMixture, ContinuousParents) {
const GaussianMixture gm = createSimpleGaussianMixture();
const KeyVector continuousParentKeys = gm.continuousParents();
// Check that the continuous parent keys are correct:
EXPECT(continuousParentKeys.size() == 1);
EXPECT(continuousParentKeys[0] == X(0));
}
/* ************************************************************************* */
/// Check that likelihood returns a mixture factor on the parents.
TEST(GaussianMixture, Likelihood) {
const GaussianMixture gm = createSimpleGaussianMixture();
// Call the likelihood function:
VectorValues measurements;
measurements.insert(Z(0), Vector1(0));
const auto factor = gm.likelihood(measurements);
// Check that the factor is a mixture factor on the parents.
// Loop over all discrete assignments over the discrete parents:
const DiscreteKeys discreteParentKeys = gm.discreteKeys();
// Apply the likelihood function to all conditionals:
const GaussianMixtureFactor::Factors factors(
gm.conditionals(),
[measurements](const GaussianConditional::shared_ptr& conditional) {
return conditional->likelihood(measurements);
});
const GaussianMixtureFactor expected({X(0)}, {mode}, factors);
EXPECT(assert_equal(*factor, expected));
}
/* ************************************************************************* */

View File

@ -36,36 +36,75 @@ using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
static const DiscreteKey Asia(0, 2);
static const Key asiaKey = 0;
static const DiscreteKey Asia(asiaKey, 2);
/* ****************************************************************************/
// Test creation
// Test creation of a pure discrete Bayes net.
TEST(HybridBayesNet, Creation) {
HybridBayesNet bayesNet;
bayesNet.add(Asia, "99/1");
bayesNet.emplaceDiscrete(Asia, "99/1");
DiscreteConditional expected(Asia, "99/1");
CHECK(bayesNet.atDiscrete(0));
auto& df = *bayesNet.atDiscrete(0);
EXPECT(df.equals(expected));
EXPECT(assert_equal(expected, *bayesNet.atDiscrete(0)));
}
/* ****************************************************************************/
// Test adding a bayes net to another one.
// Test adding a Bayes net to another one.
TEST(HybridBayesNet, Add) {
HybridBayesNet bayesNet;
bayesNet.add(Asia, "99/1");
DiscreteConditional expected(Asia, "99/1");
bayesNet.emplaceDiscrete(Asia, "99/1");
HybridBayesNet other;
other.push_back(bayesNet);
EXPECT(bayesNet.equals(other));
}
/* ****************************************************************************/
// Test evaluate for a pure discrete Bayes net P(Asia).
TEST(HybridBayesNet, evaluatePureDiscrete) {
HybridBayesNet bayesNet;
bayesNet.emplaceDiscrete(Asia, "99/1");
HybridValues values;
values.insert(asiaKey, 0);
EXPECT_DOUBLES_EQUAL(0.99, bayesNet.evaluate(values), 1e-9);
}
/* ****************************************************************************/
// Test evaluate for a hybrid Bayes net P(X0|X1) P(X1|Asia) P(Asia).
TEST(HybridBayesNet, evaluateHybrid) {
const auto continuousConditional = GaussianConditional::FromMeanAndStddev(
X(0), 2 * I_1x1, X(1), Vector1(-4.0), 5.0);
const SharedDiagonal model0 = noiseModel::Diagonal::Sigmas(Vector1(2.0)),
model1 = noiseModel::Diagonal::Sigmas(Vector1(3.0));
const auto conditional0 = boost::make_shared<GaussianConditional>(
X(1), Vector1::Constant(5), I_1x1, model0),
conditional1 = boost::make_shared<GaussianConditional>(
X(1), Vector1::Constant(2), I_1x1, model1);
// Create hybrid Bayes net.
HybridBayesNet bayesNet;
bayesNet.emplaceGaussian(continuousConditional);
GaussianMixture gm({X(1)}, {}, {Asia}, {conditional0, conditional1});
bayesNet.emplaceMixture(gm); // copy :-(
bayesNet.emplaceDiscrete(Asia, "99/1");
// Create values at which to evaluate.
HybridValues values;
values.insert(asiaKey, 0);
values.insert(X(0), Vector1(-6));
values.insert(X(1), Vector1(1));
const double conditionalProbability =
continuousConditional.evaluate(values.continuous());
const double mixtureProbability = conditional0->evaluate(values.continuous());
EXPECT_DOUBLES_EQUAL(conditionalProbability * mixtureProbability * 0.99,
bayesNet.evaluate(values), 1e-9);
}
/* ****************************************************************************/
// Test choosing an assignment of conditionals
TEST(HybridBayesNet, Choose) {
@ -105,7 +144,7 @@ TEST(HybridBayesNet, Choose) {
}
/* ****************************************************************************/
// Test bayes net optimize
// Test Bayes net optimize
TEST(HybridBayesNet, OptimizeAssignment) {
Switching s(4);
@ -139,7 +178,7 @@ TEST(HybridBayesNet, OptimizeAssignment) {
}
/* ****************************************************************************/
// Test bayes net optimize
// Test Bayes net optimize
TEST(HybridBayesNet, Optimize) {
Switching s(4);
@ -184,7 +223,7 @@ TEST(HybridBayesNet, Error) {
// regression
EXPECT(assert_equal(expected_error, error_tree, 1e-9));
// Error on pruned bayes net
// Error on pruned Bayes net
auto prunedBayesNet = hybridBayesNet->prune(2);
auto pruned_error_tree = prunedBayesNet.error(delta.continuous());
@ -219,7 +258,7 @@ TEST(HybridBayesNet, Error) {
}
/* ****************************************************************************/
// Test bayes net pruning
// Test Bayes net pruning
TEST(HybridBayesNet, Prune) {
Switching s(4);
@ -237,7 +276,7 @@ TEST(HybridBayesNet, Prune) {
}
/* ****************************************************************************/
// Test bayes net updateDiscreteConditionals
// Test Bayes net updateDiscreteConditionals
TEST(HybridBayesNet, UpdateDiscreteConditionals) {
Switching s(4);
@ -254,8 +293,7 @@ TEST(HybridBayesNet, UpdateDiscreteConditionals) {
EXPECT_LONGS_EQUAL(maxNrLeaves + 2 /*2 zero leaves*/,
prunedDecisionTree->nrLeaves());
auto original_discrete_conditionals =
*(hybridBayesNet->at(4)->asDiscreteConditional());
auto original_discrete_conditionals = *(hybridBayesNet->at(4)->asDiscrete());
// Prune!
hybridBayesNet->prune(maxNrLeaves);
@ -275,8 +313,7 @@ TEST(HybridBayesNet, UpdateDiscreteConditionals) {
};
// Get the pruned discrete conditionals as an AlgebraicDecisionTree
auto pruned_discrete_conditionals =
hybridBayesNet->at(4)->asDiscreteConditional();
auto pruned_discrete_conditionals = hybridBayesNet->at(4)->asDiscrete();
auto discrete_conditional_tree =
boost::dynamic_pointer_cast<DecisionTreeFactor::ADT>(
pruned_discrete_conditionals);
@ -339,7 +376,7 @@ TEST(HybridBayesNet, Sampling) {
// Sample
HybridValues sample = bn->sample(&gen);
discrete_samples.push_back(sample.discrete()[M(0)]);
discrete_samples.push_back(sample.discrete().at(M(0)));
if (i == 0) {
average_continuous.insert(sample.continuous());

View File

@ -133,7 +133,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
auto result =
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {M(1)}));
auto dc = result->at(2)->asDiscreteConditional();
auto dc = result->at(2)->asDiscrete();
DiscreteValues dv;
dv[M(1)] = 0;
EXPECT_DOUBLES_EQUAL(1, dc->operator()(dv), 1e-3);
@ -176,7 +176,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
hfg.add(GaussianMixtureFactor::FromFactors(
hfg.add(GaussianMixtureFactor(
{X(1)}, {{M(1), 2}},
{boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
@ -237,7 +237,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
hfg.add(JacobianFactor(X(1), I_3x3, X(2), -I_3x3, Z_3x1));
{
hfg.add(GaussianMixtureFactor::FromFactors(
hfg.add(GaussianMixtureFactor(
{X(0)}, {{M(0), 2}},
{boost::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones())}));

View File

@ -111,8 +111,7 @@ TEST(HybridGaussianElimination, IncrementalInference) {
// Run update step
isam.update(graph1);
auto discreteConditional_m0 =
isam[M(0)]->conditional()->asDiscreteConditional();
auto discreteConditional_m0 = isam[M(0)]->conditional()->asDiscrete();
EXPECT(discreteConditional_m0->keys() == KeyVector({M(0)}));
/********************************************************/
@ -171,10 +170,10 @@ TEST(HybridGaussianElimination, IncrementalInference) {
DiscreteValues m00;
m00[M(0)] = 0, m00[M(1)] = 0;
DiscreteConditional decisionTree =
*(*discreteBayesTree)[M(1)]->conditional()->asDiscreteConditional();
*(*discreteBayesTree)[M(1)]->conditional()->asDiscrete();
double m00_prob = decisionTree(m00);
auto discreteConditional = isam[M(1)]->conditional()->asDiscreteConditional();
auto discreteConditional = isam[M(1)]->conditional()->asDiscrete();
// Test the probability values with regression tests.
DiscreteValues assignment;
@ -540,7 +539,7 @@ TEST(HybridGaussianISAM, NonTrivial) {
// The final discrete graph should not be empty since we have eliminated
// all continuous variables.
auto discreteTree = inc[M(3)]->conditional()->asDiscreteConditional();
auto discreteTree = inc[M(3)]->conditional()->asDiscrete();
EXPECT_LONGS_EQUAL(3, discreteTree->size());
// Test if the optimal discrete mode assignment is (1, 1, 1).

View File

@ -124,8 +124,7 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
isam.update(graph1, initial);
HybridGaussianISAM bayesTree = isam.bayesTree();
auto discreteConditional_m0 =
bayesTree[M(0)]->conditional()->asDiscreteConditional();
auto discreteConditional_m0 = bayesTree[M(0)]->conditional()->asDiscrete();
EXPECT(discreteConditional_m0->keys() == KeyVector({M(0)}));
/********************************************************/
@ -189,11 +188,11 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
DiscreteValues m00;
m00[M(0)] = 0, m00[M(1)] = 0;
DiscreteConditional decisionTree =
*(*discreteBayesTree)[M(1)]->conditional()->asDiscreteConditional();
*(*discreteBayesTree)[M(1)]->conditional()->asDiscrete();
double m00_prob = decisionTree(m00);
auto discreteConditional =
bayesTree[M(1)]->conditional()->asDiscreteConditional();
bayesTree[M(1)]->conditional()->asDiscrete();
// Test the probability values with regression tests.
DiscreteValues assignment;
@ -564,7 +563,7 @@ TEST(HybridNonlinearISAM, NonTrivial) {
// The final discrete graph should not be empty since we have eliminated
// all continuous variables.
auto discreteTree = bayesTree[M(3)]->conditional()->asDiscreteConditional();
auto discreteTree = bayesTree[M(3)]->conditional()->asDiscrete();
EXPECT_LONGS_EQUAL(3, discreteTree->size());
// Test if the optimal discrete mode assignment is (1, 1, 1).

View File

@ -46,7 +46,8 @@ namespace gtsam {
return optimize(solution);
}
VectorValues GaussianBayesNet::optimize(VectorValues solution) const {
VectorValues GaussianBayesNet::optimize(const VectorValues& given) const {
VectorValues solution = given;
// (R*x)./sigmas = y by solving x=inv(R)*(y.*sigmas)
// solve each node in reverse topological sort order (parents first)
for (auto cg : boost::adaptors::reverse(*this)) {
@ -224,5 +225,19 @@ namespace gtsam {
}
/* ************************************************************************* */
double GaussianBayesNet::logDensity(const VectorValues& x) const {
double sum = 0.0;
for (const auto& conditional : *this) {
if (conditional) sum += conditional->logDensity(x);
}
return sum;
}
/* ************************************************************************* */
double GaussianBayesNet::evaluate(const VectorValues& x) const {
return exp(logDensity(x));
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -88,12 +88,32 @@ namespace gtsam {
/// @name Standard Interface
/// @{
/**
* Calculate probability density for given values `x`:
* exp(-error(x)) / sqrt((2*pi)^n*det(Sigma))
* where x is the vector of values, and Sigma is the covariance matrix.
* Note that error(x)=0.5*e'*e includes the 0.5 factor already.
*/
double evaluate(const VectorValues& x) const;
/// Evaluate probability density, sugar.
double operator()(const VectorValues& x) const {
return evaluate(x);
}
/**
* Calculate log-density for given values `x`:
* -error(x) - 0.5 * n*log(2*pi) - 0.5 * log det(Sigma)
* where x is the vector of values, and Sigma is the covariance matrix.
*/
double logDensity(const VectorValues& x) const;
/// Solve the GaussianBayesNet, i.e. return \f$ x = R^{-1}*d \f$, by
/// back-substitution
VectorValues optimize() const;
/// Version of optimize for incomplete BayesNet, given missing variables
VectorValues optimize(const VectorValues given) const;
VectorValues optimize(const VectorValues& given) const;
/**
* Sample using ancestral sampling

View File

@ -63,13 +63,24 @@ namespace gtsam {
: BaseFactor(key, R, parent1, S, parent2, T, d, sigmas),
BaseConditional(1) {}
/* ************************************************************************ */
GaussianConditional GaussianConditional::FromMeanAndStddev(Key key,
const Vector& mu,
double sigma) {
// |Rx - d| = |x-(Ay + b)|/sigma
const Matrix R = Matrix::Identity(mu.size(), mu.size());
const Vector& d = mu;
return GaussianConditional(key, d, R,
noiseModel::Isotropic::Sigma(mu.size(), sigma));
}
/* ************************************************************************ */
GaussianConditional GaussianConditional::FromMeanAndStddev(
Key key, const Matrix& A, Key parent, const Vector& b, double sigma) {
// |Rx + Sy - d| = |x-(Ay + b)|/sigma
const Matrix R = Matrix::Identity(b.size(), b.size());
const Matrix S = -A;
const Vector d = b;
const Vector& d = b;
return GaussianConditional(key, d, R, parent, S,
noiseModel::Isotropic::Sigma(b.size(), sigma));
}
@ -82,7 +93,7 @@ namespace gtsam {
const Matrix R = Matrix::Identity(b.size(), b.size());
const Matrix S = -A1;
const Matrix T = -A2;
const Vector d = b;
const Vector& d = b;
return GaussianConditional(key, d, R, parent1, S, parent2, T,
noiseModel::Isotropic::Sigma(b.size(), sigma));
}
@ -169,6 +180,21 @@ double GaussianConditional::logDeterminant() const {
return logDet;
}
/* ************************************************************************* */
// density = exp(-error(x)) / sqrt((2*pi)^n*det(Sigma))
// log = -error(x) - 0.5 * n*log(2*pi) - 0.5 * log det(Sigma)
double GaussianConditional::logDensity(const VectorValues& x) const {
constexpr double log2pi = 1.8378770664093454835606594728112;
size_t n = d().size();
// log det(Sigma)) = - 2.0 * logDeterminant()
return - error(x) - 0.5 * n * log2pi + logDeterminant();
}
/* ************************************************************************* */
double GaussianConditional::evaluate(const VectorValues& x) const {
return exp(logDensity(x));
}
/* ************************************************************************* */
VectorValues GaussianConditional::solve(const VectorValues& x) const {
// Concatenate all vector values that correspond to parent variables

View File

@ -84,12 +84,17 @@ namespace gtsam {
const KEYS& keys, size_t nrFrontals, const VerticalBlockMatrix& augmentedMatrix,
const SharedDiagonal& sigmas = SharedDiagonal());
/// Construct from mean A1 p1 + b and standard deviation.
/// Construct from mean `mu` and standard deviation `sigma`.
static GaussianConditional FromMeanAndStddev(Key key, const Vector& mu,
double sigma);
/// Construct from conditional mean `A1 p1 + b` and standard deviation.
static GaussianConditional FromMeanAndStddev(Key key, const Matrix& A,
Key parent, const Vector& b,
double sigma);
/// Construct from mean A1 p1 + A2 p2 + b and standard deviation.
/// Construct from conditional mean `A1 p1 + A2 p2 + b` and standard
/// deviation `sigma`.
static GaussianConditional FromMeanAndStddev(Key key, //
const Matrix& A1, Key parent1,
const Matrix& A2, Key parent2,
@ -121,6 +126,26 @@ namespace gtsam {
/// @name Standard Interface
/// @{
/**
* Calculate probability density for given values `x`:
* exp(-error(x)) / sqrt((2*pi)^n*det(Sigma))
* where x is the vector of values, and Sigma is the covariance matrix.
* Note that error(x)=0.5*e'*e includes the 0.5 factor already.
*/
double evaluate(const VectorValues& x) const;
/// Evaluate probability density, sugar.
double operator()(const VectorValues& x) const {
return evaluate(x);
}
/**
* Calculate log-density for given values `x`:
* -error(x) - 0.5 * n*log(2*pi) - 0.5 * log det(Sigma)
* where x is the vector of values, and Sigma is the covariance matrix.
*/
double logDensity(const VectorValues& x) const;
/** Return a view of the upper-triangular R block of the conditional */
constABlock R() const { return Ab_.range(0, nrFrontals()); }
@ -134,27 +159,31 @@ namespace gtsam {
const constBVector d() const { return BaseFactor::getb(); }
/**
* @brief Compute the log determinant of the Gaussian conditional.
* The determinant is computed using the R matrix, which is upper
* triangular.
* For numerical stability, the determinant is computed in log
* form, so it is a summation rather than a multiplication.
* @brief Compute the determinant of the R matrix.
*
* @return double
*/
double logDeterminant() const;
/**
* @brief Compute the determinant of the conditional from the
* upper-triangular R matrix.
*
* The determinant is computed in log form (hence summation) for numerical
* stability and then exponentiated.
* The determinant is computed in log form using logDeterminant for
* numerical stability and then exponentiated.
*
* Note, the covariance matrix \f$ \Sigma = (R^T R)^{-1} \f$, and hence
* \f$ \det(\Sigma) = 1 / \det(R^T R) = 1 / determinant()^ 2 \f$.
*
* @return double
*/
double determinant() const { return exp(this->logDeterminant()); }
/**
* @brief Compute the log determinant of the R matrix.
*
* For numerical stability, the determinant is computed in log
* form, so it is a summation rather than a multiplication.
*
* Note, the covariance matrix \f$ \Sigma = (R^T R)^{-1} \f$, and hence
* \f$ \log \det(\Sigma) = - \log \det(R^T R) = - 2 logDeterminant() \f$.
*
* @return double
*/
double logDeterminant() const;
/**
* Solves a conditional Gaussian and writes the solution into the entries of
* \c x for each frontal variable of the conditional. The parents are

View File

@ -470,6 +470,10 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
size_t name2, Matrix T);
// Named constructors
static gtsam::GaussianConditional FromMeanAndStddev(gtsam::Key key,
const Vector& mu,
double sigma);
static gtsam::GaussianConditional FromMeanAndStddev(gtsam::Key key,
const Matrix& A,
gtsam::Key parent,
@ -490,6 +494,8 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
bool equals(const gtsam::GaussianConditional& cg, double tol) const;
// Standard Interface
double evaluate(const gtsam::VectorValues& x) const;
double logDensity(const gtsam::VectorValues& x) const;
gtsam::Key firstFrontalKey() const;
gtsam::VectorValues solve(const gtsam::VectorValues& parents) const;
gtsam::JacobianFactor* likelihood(
@ -543,17 +549,20 @@ virtual class GaussianBayesNet {
bool equals(const gtsam::GaussianBayesNet& other, double tol) const;
size_t size() const;
// Standard interface
void push_back(gtsam::GaussianConditional* conditional);
void push_back(const gtsam::GaussianBayesNet& bayesNet);
gtsam::GaussianConditional* front() const;
gtsam::GaussianConditional* back() const;
// Standard interface
double evaluate(const gtsam::VectorValues& x) const;
double logDensity(const gtsam::VectorValues& x) const;
gtsam::VectorValues optimize() const;
gtsam::VectorValues optimize(gtsam::VectorValues given) const;
gtsam::VectorValues optimize(const gtsam::VectorValues& given) const;
gtsam::VectorValues optimizeGradientSearch() const;
gtsam::VectorValues sample(gtsam::VectorValues given) const;
gtsam::VectorValues sample(const gtsam::VectorValues& given) const;
gtsam::VectorValues sample() const;
gtsam::VectorValues backSubstitute(const gtsam::VectorValues& gx) const;
gtsam::VectorValues backSubstituteTranspose(const gtsam::VectorValues& gx) const;

View File

@ -1,6 +1,6 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* GTSAM Copyright 2010-2022, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
@ -67,6 +67,36 @@ TEST( GaussianBayesNet, Matrix )
EXPECT(assert_equal(d,d1));
}
/* ************************************************************************* */
// Check that the evaluate function matches direct calculation with R.
TEST(GaussianBayesNet, Evaluate1) {
// Let's evaluate at the mean
const VectorValues mean = smallBayesNet.optimize();
// We get the matrix, which has noise model applied!
const Matrix R = smallBayesNet.matrix().first;
const Matrix invSigma = R.transpose() * R;
// The Bayes net is a Gaussian density ~ exp (-0.5*(Rx-d)'*(Rx-d))
// which at the mean is 1.0! So, the only thing we need to calculate is
// the normalization constant 1.0/sqrt((2*pi*Sigma).det()).
// The covariance matrix inv(Sigma) = R'*R, so the determinant is
const double expected = sqrt((invSigma / (2 * M_PI)).determinant());
const double actual = smallBayesNet.evaluate(mean);
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-9);
}
// Check the evaluate with non-unit noise.
TEST(GaussianBayesNet, Evaluate2) {
// See comments in test above.
const VectorValues mean = noisyBayesNet.optimize();
const Matrix R = noisyBayesNet.matrix().first;
const Matrix invSigma = R.transpose() * R;
const double expected = sqrt((invSigma / (2 * M_PI)).determinant());
const double actual = noisyBayesNet.evaluate(mean);
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-9);
}
/* ************************************************************************* */
TEST( GaussianBayesNet, NoisyMatrix )
{
@ -142,14 +172,18 @@ TEST( GaussianBayesNet, optimize3 )
}
/* ************************************************************************* */
TEST(GaussianBayesNet, sample) {
GaussianBayesNet gbn;
Matrix A1 = (Matrix(2, 2) << 1., 2., 3., 4.).finished();
const Vector2 mean(20, 40), b(10, 10);
const double sigma = 0.01;
namespace sampling {
static Matrix A1 = (Matrix(2, 2) << 1., 2., 3., 4.).finished();
static const Vector2 mean(20, 40), b(10, 10);
static const double sigma = 0.01;
static const GaussianBayesNet gbn =
list_of(GaussianConditional::FromMeanAndStddev(X(0), A1, X(1), b, sigma))(
GaussianDensity::FromMeanAndStddev(X(1), mean, sigma));
} // namespace sampling
gbn.add(GaussianConditional::FromMeanAndStddev(X(0), A1, X(1), b, sigma));
gbn.add(GaussianDensity::FromMeanAndStddev(X(1), mean, sigma));
/* ************************************************************************* */
TEST(GaussianBayesNet, sample) {
using namespace sampling;
auto actual = gbn.sample();
EXPECT_LONGS_EQUAL(2, actual.size());
@ -165,6 +199,23 @@ TEST(GaussianBayesNet, sample) {
// EXPECT(assert_equal(Vector2(110.032083, 230.039811), actual[X(0)], 1e-5));
}
/* ************************************************************************* */
// Do Monte Carlo integration of square deviation, should be equal to 9.0.
TEST(GaussianBayesNet, MonteCarloIntegration) {
GaussianBayesNet gbn;
gbn.push_back(noisyBayesNet.at(1));
double sum = 0.0;
constexpr size_t N = 1000;
// loop for N samples:
for (size_t i = 0; i < N; i++) {
const auto X_i = gbn.sample();
sum += pow(X_i[_y_].x() - 5.0, 2.0);
}
// Expected is variance = 3*3
EXPECT_DOUBLES_EQUAL(9.0, sum / N, 0.5); // Pretty high.
}
/* ************************************************************************* */
TEST(GaussianBayesNet, ordering)
{

View File

@ -130,6 +130,75 @@ TEST( GaussianConditional, equals )
EXPECT( expected.equals(actual) );
}
/* ************************************************************************* */
namespace density {
static const Key key = 77;
static constexpr double sigma = 3.0;
static const auto unitPrior =
GaussianConditional(key, Vector1::Constant(5), I_1x1),
widerPrior = GaussianConditional(
key, Vector1::Constant(5), I_1x1,
noiseModel::Isotropic::Sigma(1, sigma));
} // namespace density
/* ************************************************************************* */
// Check that the evaluate function matches direct calculation with R.
TEST(GaussianConditional, Evaluate1) {
// Let's evaluate at the mean
const VectorValues mean = density::unitPrior.solve(VectorValues());
// We get the Hessian matrix, which has noise model applied!
const Matrix invSigma = density::unitPrior.information();
// A Gaussian density ~ exp (-0.5*(Rx-d)'*(Rx-d))
// which at the mean is 1.0! So, the only thing we need to calculate is
// the normalization constant 1.0/sqrt((2*pi*Sigma).det()).
// The covariance matrix inv(Sigma) = R'*R, so the determinant is
const double expected = sqrt((invSigma / (2 * M_PI)).determinant());
const double actual = density::unitPrior.evaluate(mean);
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-9);
using density::key;
using density::sigma;
// Let's numerically integrate and see that we integrate to 1.0.
double integral = 0.0;
// Loop from -5*sigma to 5*sigma in 0.1*sigma steps:
for (double x = -5.0 * sigma; x <= 5.0 * sigma; x += 0.1 * sigma) {
VectorValues xValues;
xValues.insert(key, mean.at(key) + Vector1(x));
const double density = density::unitPrior.evaluate(xValues);
integral += 0.1 * sigma * density;
}
EXPECT_DOUBLES_EQUAL(1.0, integral, 1e-9);
}
/* ************************************************************************* */
// Check the evaluate with non-unit noise.
TEST(GaussianConditional, Evaluate2) {
// See comments in test above.
const VectorValues mean = density::widerPrior.solve(VectorValues());
const Matrix R = density::widerPrior.R();
const Matrix invSigma = density::widerPrior.information();
const double expected = sqrt((invSigma / (2 * M_PI)).determinant());
const double actual = density::widerPrior.evaluate(mean);
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-9);
using density::key;
using density::sigma;
// Let's numerically integrate and see that we integrate to 1.0.
double integral = 0.0;
// Loop from -5*sigma to 5*sigma in 0.1*sigma steps:
for (double x = -5.0 * sigma; x <= 5.0 * sigma; x += 0.1 * sigma) {
VectorValues xValues;
xValues.insert(key, mean.at(key) + Vector1(x));
const double density = density::widerPrior.evaluate(xValues);
integral += 0.1 * sigma * density;
}
EXPECT_DOUBLES_EQUAL(1.0, integral, 1e-5);
}
/* ************************************************************************* */
TEST( GaussianConditional, solve )
{

View File

@ -216,7 +216,13 @@ virtual class CombinedImuFactor: gtsam::NonlinearFactor {
#include <gtsam/navigation/AHRSFactor.h>
class PreintegratedAhrsMeasurements {
// Standard Constructor
PreintegratedAhrsMeasurements(Vector bias, Matrix measuredOmegaCovariance);
PreintegratedAhrsMeasurements(const gtsam::PreintegrationParams* params,
const Vector& biasHat);
PreintegratedAhrsMeasurements(const gtsam::PreintegrationParams* p,
const Vector& bias_hat, double deltaTij,
const gtsam::Rot3& deltaRij,
const Matrix& delRdelBiasOmega,
const Matrix& preint_meas_cov);
PreintegratedAhrsMeasurements(const gtsam::PreintegratedAhrsMeasurements& rhs);
// Testable

View File

@ -144,7 +144,7 @@ public:
std::cout << e.what() << ": Landmark "<< DefaultKeyFormatter(this->template key<2>()) <<
" moved behind camera " << DefaultKeyFormatter(this->template key<1>()) << std::endl;
if (throwCheirality_)
throw StereoCheiralityException(this->key2());
throw StereoCheiralityException(this->template key<2>());
}
return Vector3::Constant(2.0 * K_->fx());
}

View File

@ -21,9 +21,7 @@ virtual class gtsam::noiseModel::Isotropic;
virtual class gtsam::imuBias::ConstantBias;
virtual class gtsam::NonlinearFactor;
virtual class gtsam::NoiseModelFactor;
virtual class gtsam::NoiseModelFactor2;
virtual class gtsam::NoiseModelFactor3;
virtual class gtsam::NoiseModelFactor4;
virtual class gtsam::NoiseModelFactorN;
virtual class gtsam::GaussianFactor;
virtual class gtsam::HessianFactor;
virtual class gtsam::JacobianFactor;
@ -430,8 +428,9 @@ virtual class IMUFactor : gtsam::NoiseModelFactor {
Vector gyro() const;
Vector accel() const;
Vector z() const;
size_t key1() const;
size_t key2() const;
template <I = {1, 2}>
size_t key() const;
};
#include <gtsam_unstable/dynamics/FullIMUFactor.h>
@ -448,8 +447,9 @@ virtual class FullIMUFactor : gtsam::NoiseModelFactor {
Vector gyro() const;
Vector accel() const;
Vector z() const;
size_t key1() const;
size_t key2() const;
template <I = {1, 2}>
size_t key() const;
};
#include <gtsam_unstable/dynamics/DynamicsPriors.h>
@ -733,14 +733,14 @@ class AHRS {
// Tectonic SAM Factors
#include <gtsam_unstable/slam/TSAMFactors.h>
//typedef gtsam::NoiseModelFactor2<gtsam::Pose2, gtsam::Point2> NLPosePose;
//typedef gtsam::NoiseModelFactorN<gtsam::Pose2, gtsam::Point2> NLPosePose;
virtual class DeltaFactor : gtsam::NoiseModelFactor {
DeltaFactor(size_t i, size_t j, const gtsam::Point2& measured,
const gtsam::noiseModel::Base* noiseModel);
//void print(string s) const;
};
//typedef gtsam::NoiseModelFactor4<gtsam::Pose2, gtsam::Pose2, gtsam::Pose2,
//typedef gtsam::NoiseModelFactorN<gtsam::Pose2, gtsam::Pose2, gtsam::Pose2,
// gtsam::Point2> NLPosePosePosePoint;
virtual class DeltaFactorBase : gtsam::NoiseModelFactor {
DeltaFactorBase(size_t b1, size_t i, size_t b2, size_t j,
@ -748,7 +748,7 @@ virtual class DeltaFactorBase : gtsam::NoiseModelFactor {
//void print(string s) const;
};
//typedef gtsam::NoiseModelFactor4<gtsam::Pose2, gtsam::Pose2, gtsam::Pose2,
//typedef gtsam::NoiseModelFactorN<gtsam::Pose2, gtsam::Pose2, gtsam::Pose2,
// gtsam::Pose2> NLPosePosePosePose;
virtual class OdometryFactorBase : gtsam::NoiseModelFactor {
OdometryFactorBase(size_t b1, size_t i, size_t b2, size_t j,

View File

@ -15,8 +15,8 @@ namespace gtsam {
void LocalOrientedPlane3Factor::print(const string& s,
const KeyFormatter& keyFormatter) const {
cout << s << (s == "" ? "" : "\n");
cout << "LocalOrientedPlane3Factor Factor (" << keyFormatter(key1()) << ", "
<< keyFormatter(key2()) << ", " << keyFormatter(key3()) << ")\n";
cout << "LocalOrientedPlane3Factor Factor (" << keyFormatter(key<1>()) << ", "
<< keyFormatter(key<2>()) << ", " << keyFormatter(key<3>()) << ")\n";
measured_p_.print("Measured Plane");
this->noiseModel_->print(" noise model: ");
}

View File

@ -12,10 +12,9 @@
*/
#include <pybind11/stl.h>
// NOTE: Needed since we are including pybind11/stl.h.
#ifdef GTSAM_ALLOCATOR_TBB
PYBIND11_MAKE_OPAQUE(std::vector<gtsam::Key, tbb::tbb_allocator<gtsam::Key>>);
#else
PYBIND11_MAKE_OPAQUE(std::vector<gtsam::Key>);
#endif
PYBIND11_MAKE_OPAQUE(std::vector<gtsam::GaussianFactor::shared_ptr>);

View File

@ -1,4 +0,0 @@
py::bind_vector<std::vector<gtsam::GaussianFactor::shared_ptr> >(m_, "GaussianFactorVector");
py::implicitly_convertible<py::list, std::vector<gtsam::GaussianFactor::shared_ptr> >();

View File

@ -29,8 +29,7 @@ def smallBayesNet():
"""Create a small Bayes Net for testing"""
bayesNet = GaussianBayesNet()
I_1x1 = np.eye(1, dtype=float)
bayesNet.push_back(GaussianConditional(
_x_, [9.0], I_1x1, _y_, I_1x1))
bayesNet.push_back(GaussianConditional(_x_, [9.0], I_1x1, _y_, I_1x1))
bayesNet.push_back(GaussianConditional(_y_, [5.0], I_1x1))
return bayesNet
@ -41,13 +40,21 @@ class TestGaussianBayesNet(GtsamTestCase):
def test_matrix(self):
"""Test matrix method"""
R, d = smallBayesNet().matrix() # get matrix and RHS
R1 = np.array([
[1.0, 1.0],
[0.0, 1.0]])
R1 = np.array([[1.0, 1.0], [0.0, 1.0]])
d1 = np.array([9.0, 5.0])
np.testing.assert_equal(R, R1)
np.testing.assert_equal(d, d1)
def test_sample(self):
"""Test sample method"""
bayesNet = smallBayesNet()
sample = bayesNet.sample()
self.assertIsInstance(sample, gtsam.VectorValues)
if __name__ == '__main__':
# standard deviation is 1.0 for both, so we set tolerance to 3*sigma
mean = bayesNet.optimize()
self.gtsamAssertEquals(sample, mean, tol=3.0)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,68 @@
"""
GTSAM Copyright 2010-2022, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for Hybrid Values.
Author: Frank Dellaert
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
import unittest
import numpy as np
from gtsam.symbol_shorthand import A, X
from gtsam.utils.test_case import GtsamTestCase
import gtsam
from gtsam import (DiscreteKeys, GaussianConditional, GaussianMixture,
HybridBayesNet, HybridValues, noiseModel)
class TestHybridBayesNet(GtsamTestCase):
"""Unit tests for HybridValues."""
def test_evaluate(self):
"""Test evaluate for a hybrid Bayes net P(X0|X1) P(X1|Asia) P(Asia)."""
asiaKey = A(0)
Asia = (asiaKey, 2)
# Create the continuous conditional
I_1x1 = np.eye(1)
gc = GaussianConditional.FromMeanAndStddev(X(0), 2 * I_1x1, X(1), [-4],
5.0)
# Create the noise models
model0 = noiseModel.Diagonal.Sigmas([2.0])
model1 = noiseModel.Diagonal.Sigmas([3.0])
# Create the conditionals
conditional0 = GaussianConditional(X(1), [5], I_1x1, model0)
conditional1 = GaussianConditional(X(1), [2], I_1x1, model1)
dkeys = DiscreteKeys()
dkeys.push_back(Asia)
gm = GaussianMixture([X(1)], [], dkeys, [conditional0, conditional1])
# Create hybrid Bayes net.
bayesNet = HybridBayesNet()
bayesNet.addGaussian(gc)
bayesNet.addMixture(gm)
bayesNet.emplaceDiscrete(Asia, "99/1")
# Create values at which to evaluate.
values = HybridValues()
values.insert(asiaKey, 0)
values.insert(X(0), [-6])
values.insert(X(1), [1])
conditionalProbability = gc.evaluate(values.continuous())
mixtureProbability = conditional0.evaluate(values.continuous())
self.assertAlmostEqual(conditionalProbability * mixtureProbability *
0.99,
bayesNet.evaluate(values),
places=5)
if __name__ == "__main__":
unittest.main()

View File

@ -10,79 +10,168 @@ Author: Fan Jiang
"""
# pylint: disable=invalid-name, no-name-in-module, no-member
from __future__ import print_function
import unittest
import math
import numpy as np
from gtsam.symbol_shorthand import C, M, X, Z
from gtsam.utils.test_case import GtsamTestCase
import gtsam
import numpy as np
from gtsam.symbol_shorthand import C, X
from gtsam.utils.test_case import GtsamTestCase
from gtsam import (
DecisionTreeFactor,
DiscreteConditional,
DiscreteKeys,
GaussianConditional,
GaussianMixture,
GaussianMixtureFactor,
HybridGaussianFactorGraph,
JacobianFactor,
Ordering,
noiseModel,
)
class TestHybridGaussianFactorGraph(GtsamTestCase):
"""Unit tests for HybridGaussianFactorGraph."""
def test_create(self):
"""Test contruction of hybrid factor graph."""
noiseModel = gtsam.noiseModel.Unit.Create(3)
dk = gtsam.DiscreteKeys()
"""Test construction of hybrid factor graph."""
model = noiseModel.Unit.Create(3)
dk = DiscreteKeys()
dk.push_back((C(0), 2))
jf1 = gtsam.JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)),
noiseModel)
jf2 = gtsam.JacobianFactor(X(0), np.eye(3), np.ones((3, 1)),
noiseModel)
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
gmf = gtsam.GaussianMixtureFactor.FromFactors([X(0)], dk, [jf1, jf2])
gmf = GaussianMixtureFactor([X(0)], dk, [jf1, jf2])
hfg = gtsam.HybridGaussianFactorGraph()
hfg.add(jf1)
hfg.add(jf2)
hfg = HybridGaussianFactorGraph()
hfg.push_back(jf1)
hfg.push_back(jf2)
hfg.push_back(gmf)
hbn = hfg.eliminateSequential(
gtsam.Ordering.ColamdConstrainedLastHybridGaussianFactorGraph(
hfg, [C(0)]))
Ordering.ColamdConstrainedLastHybridGaussianFactorGraph(hfg, [C(0)])
)
# print("hbn = ", hbn)
self.assertEqual(hbn.size(), 2)
mixture = hbn.at(0).inner()
self.assertIsInstance(mixture, gtsam.GaussianMixture)
self.assertIsInstance(mixture, GaussianMixture)
self.assertEqual(len(mixture.keys()), 2)
discrete_conditional = hbn.at(hbn.size() - 1).inner()
self.assertIsInstance(discrete_conditional, gtsam.DiscreteConditional)
self.assertIsInstance(discrete_conditional, DiscreteConditional)
def test_optimize(self):
"""Test contruction of hybrid factor graph."""
noiseModel = gtsam.noiseModel.Unit.Create(3)
dk = gtsam.DiscreteKeys()
"""Test construction of hybrid factor graph."""
model = noiseModel.Unit.Create(3)
dk = DiscreteKeys()
dk.push_back((C(0), 2))
jf1 = gtsam.JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)),
noiseModel)
jf2 = gtsam.JacobianFactor(X(0), np.eye(3), np.ones((3, 1)),
noiseModel)
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
gmf = gtsam.GaussianMixtureFactor.FromFactors([X(0)], dk, [jf1, jf2])
gmf = GaussianMixtureFactor([X(0)], dk, [jf1, jf2])
hfg = gtsam.HybridGaussianFactorGraph()
hfg.add(jf1)
hfg.add(jf2)
hfg = HybridGaussianFactorGraph()
hfg.push_back(jf1)
hfg.push_back(jf2)
hfg.push_back(gmf)
dtf = gtsam.DecisionTreeFactor([(C(0), 2)],"0 1")
hfg.add(dtf)
dtf = gtsam.DecisionTreeFactor([(C(0), 2)], "0 1")
hfg.push_back(dtf)
hbn = hfg.eliminateSequential(
gtsam.Ordering.ColamdConstrainedLastHybridGaussianFactorGraph(
hfg, [C(0)]))
Ordering.ColamdConstrainedLastHybridGaussianFactorGraph(hfg, [C(0)])
)
# print("hbn = ", hbn)
hv = hbn.optimize()
self.assertEqual(hv.atDiscrete(C(0)), 1)
@staticmethod
def tiny(num_measurements: int = 1):
"""Create a tiny two variable hybrid model."""
# Create hybrid Bayes net.
bayesNet = gtsam.HybridBayesNet()
# Create mode key: 0 is low-noise, 1 is high-noise.
modeKey = M(0)
mode = (modeKey, 2)
# Create Gaussian mixture Z(0) = X(0) + noise for each measurement.
I = np.eye(1)
keys = DiscreteKeys()
keys.push_back(mode)
for i in range(num_measurements):
conditional0 = GaussianConditional.FromMeanAndStddev(
Z(i), I, X(0), [0], sigma=0.5
)
conditional1 = GaussianConditional.FromMeanAndStddev(
Z(i), I, X(0), [0], sigma=3
)
bayesNet.emplaceMixture(
[Z(i)], [X(0)], keys, [conditional0, conditional1]
)
# Create prior on X(0).
prior_on_x0 = GaussianConditional.FromMeanAndStddev(X(0), [5.0], 5.0)
bayesNet.addGaussian(prior_on_x0)
# Add prior on mode.
bayesNet.emplaceDiscrete(mode, "1/1")
return bayesNet
def test_tiny(self):
"""Test a tiny two variable hybrid model."""
bayesNet = self.tiny()
sample = bayesNet.sample()
# print(sample)
# Create a factor graph from the Bayes net with sampled measurements.
fg = HybridGaussianFactorGraph()
conditional = bayesNet.atMixture(0)
measurement = gtsam.VectorValues()
measurement.insert(Z(0), sample.at(Z(0)))
factor = conditional.likelihood(measurement)
fg.push_back(factor)
fg.push_back(bayesNet.atGaussian(1))
fg.push_back(bayesNet.atDiscrete(2))
self.assertEqual(fg.size(), 3)
def test_tiny2(self):
"""Test a tiny two variable hybrid model, with 2 measurements."""
# Create the Bayes net and sample from it.
bayesNet = self.tiny(num_measurements=2)
sample = bayesNet.sample()
# print(sample)
# Create a factor graph from the Bayes net with sampled measurements.
fg = HybridGaussianFactorGraph()
for i in range(2):
conditional = bayesNet.atMixture(i)
measurement = gtsam.VectorValues()
measurement.insert(Z(i), sample.at(Z(i)))
factor = conditional.likelihood(measurement)
fg.push_back(factor)
fg.push_back(bayesNet.atGaussian(2))
fg.push_back(bayesNet.atDiscrete(3))
self.assertEqual(fg.size(), 4)
# Calculate ratio between Bayes net probability and the factor graph:
continuousValues = gtsam.VectorValues()
continuousValues.insert(X(0), sample.at(X(0)))
discreteValues = sample.discrete()
expected_ratio = bayesNet.evaluate(sample) / fg.probPrime(
continuousValues, discreteValues
)
print(expected_ratio)
# TODO(dellaert): Change the mode to 0 and calculate the ratio again.
if __name__ == "__main__":
unittest.main()

View File

@ -1,5 +1,5 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
GTSAM Copyright 2010-2022, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
@ -20,22 +20,23 @@ from gtsam.symbol_shorthand import C, X
from gtsam.utils.test_case import GtsamTestCase
class TestHybridGaussianFactorGraph(GtsamTestCase):
class TestHybridValues(GtsamTestCase):
"""Unit tests for HybridValues."""
def test_basic(self):
"""Test contruction and basic methods of hybrid values."""
"""Test construction and basic methods of hybrid values."""
hv1 = gtsam.HybridValues()
hv1.insert(X(0), np.ones((3,1)))
hv1.insert(X(0), np.ones((3, 1)))
hv1.insert(C(0), 2)
hv2 = gtsam.HybridValues()
hv2.insert(C(0), 2)
hv2.insert(X(0), np.ones((3,1)))
hv2.insert(X(0), np.ones((3, 1)))
self.assertEqual(hv1.atDiscrete(C(0)), 2)
self.assertEqual(hv1.at(X(0))[0], np.ones((3,1))[0])
self.assertEqual(hv1.at(X(0))[0], np.ones((3, 1))[0])
if __name__ == "__main__":
unittest.main()

View File

@ -13,7 +13,7 @@ import unittest
import numpy as np
import gtsam
from gtsam import Rot3
from gtsam import Point3, Rot3, Unit3
from gtsam.utils.test_case import GtsamTestCase
@ -2032,6 +2032,31 @@ class TestRot3(GtsamTestCase):
angle_deg = np.rad2deg(angle)
assert angle_deg < 180
def test_rotate(self) -> None:
"""Test that rotate() works for both Point3 and Unit3."""
R = Rot3(np.array([[1, 0, 0], [0, -1, 0], [0, 0, 1]]))
p = Point3(1., 1., 1.)
u = Unit3(np.array([1, 1, 1]))
actual_p = R.rotate(p)
actual_u = R.rotate(u)
expected_p = Point3(np.array([1, -1, 1]))
expected_u = Unit3(np.array([1, -1, 1]))
np.testing.assert_array_equal(actual_p, expected_p)
np.testing.assert_array_equal(actual_u.point3(), expected_u.point3())
def test_unrotate(self) -> None:
"""Test that unrotate() after rotate() yields original Point3/Unit3."""
wRc = Rot3(np.array(R1_R2_pairs[0][0]))
c_p = Point3(1., 1., 1.)
c_u = Unit3(np.array([1, 1, 1]))
w_p = wRc.rotate(c_p)
w_u = wRc.rotate(c_u)
actual_p = wRc.unrotate(w_p)
actual_u = wRc.unrotate(w_u)
np.testing.assert_almost_equal(actual_p, c_p, decimal=6)
np.testing.assert_almost_equal(actual_u.point3(), c_u.point3(), decimal=6)
if __name__ == "__main__":
unittest.main()