Added Sphere2 and EssentialMatrix to math.lyx
parent
8b9d6b78dc
commit
cf219c3a1b
|
@ -1,120 +0,0 @@
|
||||||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
|
||||||
\lyxformat 413
|
|
||||||
\begin_document
|
|
||||||
\begin_header
|
|
||||||
\textclass article
|
|
||||||
\use_default_options true
|
|
||||||
\maintain_unincluded_children false
|
|
||||||
\language english
|
|
||||||
\language_package default
|
|
||||||
\inputencoding auto
|
|
||||||
\fontencoding global
|
|
||||||
\font_roman default
|
|
||||||
\font_sans default
|
|
||||||
\font_typewriter default
|
|
||||||
\font_default_family default
|
|
||||||
\use_non_tex_fonts false
|
|
||||||
\font_sc false
|
|
||||||
\font_osf false
|
|
||||||
\font_sf_scale 100
|
|
||||||
\font_tt_scale 100
|
|
||||||
|
|
||||||
\graphics default
|
|
||||||
\default_output_format default
|
|
||||||
\output_sync 0
|
|
||||||
\bibtex_command default
|
|
||||||
\index_command default
|
|
||||||
\paperfontsize 11
|
|
||||||
\spacing single
|
|
||||||
\use_hyperref false
|
|
||||||
\papersize default
|
|
||||||
\use_geometry true
|
|
||||||
\use_amsmath 1
|
|
||||||
\use_esint 1
|
|
||||||
\use_mhchem 1
|
|
||||||
\use_mathdots 1
|
|
||||||
\cite_engine basic
|
|
||||||
\use_bibtopic false
|
|
||||||
\use_indices false
|
|
||||||
\paperorientation portrait
|
|
||||||
\suppress_date false
|
|
||||||
\use_refstyle 1
|
|
||||||
\index Index
|
|
||||||
\shortcut idx
|
|
||||||
\color #008000
|
|
||||||
\end_index
|
|
||||||
\leftmargin 1in
|
|
||||||
\topmargin 1in
|
|
||||||
\rightmargin 1in
|
|
||||||
\bottommargin 1in
|
|
||||||
\secnumdepth 3
|
|
||||||
\tocdepth 3
|
|
||||||
\paragraph_separation indent
|
|
||||||
\paragraph_indentation default
|
|
||||||
\quotes_language english
|
|
||||||
\papercolumns 1
|
|
||||||
\papersides 1
|
|
||||||
\paperpagestyle default
|
|
||||||
\tracking_changes false
|
|
||||||
\output_changes false
|
|
||||||
\html_math_output 0
|
|
||||||
\html_css_as_file 0
|
|
||||||
\html_be_strict false
|
|
||||||
\end_header
|
|
||||||
|
|
||||||
\begin_body
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
Derivative of EssentialMatrix epipolar error.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
With respect to orientation:
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
e(\omega)=a^{T}[t]_{\times}Re^{\omega}b=a^{T}Ee^{\omega}b
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\frac{\partial e(\omega)}{\partial v}=a^{T}E[b]_{\times}
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
With respect to tangent to sphere:
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
e(v)=a^{T}(Bv\times Rb)
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\frac{\partial e(v)}{\partial v}=a^{T}\frac{\partial(Bv\times Rb)}{\partial v}=a^{T}[-Rb]_{\times}B=a^{T}R[-b]_{\times}RB
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
(1*3)(3*3)(3*2)
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_body
|
|
||||||
\end_document
|
|
|
@ -3037,10 +3037,10 @@ key "Murray94book"
|
||||||
\color none
|
\color none
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\exp\left(\left[\begin{array}{c}
|
\exp\left(\widehat{\left[\begin{array}{c}
|
||||||
\omega\\
|
\omega\\
|
||||||
v
|
v
|
||||||
\end{array}\right]t\right)=\left[\begin{array}{cc}
|
\end{array}\right]}t\right)=\left[\begin{array}{cc}
|
||||||
e^{\Skew{\omega}t} & (I-e^{\Skew{\omega}t})\left(\omega\times v\right)+\omega\omega^{T}vt\\
|
e^{\Skew{\omega}t} & (I-e^{\Skew{\omega}t})\left(\omega\times v\right)+\omega\omega^{T}vt\\
|
||||||
0 & 1
|
0 & 1
|
||||||
\end{array}\right]
|
\end{array}\right]
|
||||||
|
|
621
doc/math.lyx
621
doc/math.lyx
|
@ -1594,7 +1594,7 @@ First, the derivative
|
||||||
\begin_inset Formula $D_{2}f$
|
\begin_inset Formula $D_{2}f$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
with respect to in
|
with respect to
|
||||||
\begin_inset Formula $p$
|
\begin_inset Formula $p$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -1614,11 +1614,11 @@ For the derivative
|
||||||
\begin_inset Formula $T$
|
\begin_inset Formula $T$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, we want
|
, we want to find the linear map
|
||||||
\end_layout
|
\begin_inset Formula $D_{1}f$
|
||||||
|
\end_inset
|
||||||
\begin_layout Proof
|
|
||||||
|
|
||||||
|
such that
|
||||||
\family roman
|
\family roman
|
||||||
\series medium
|
\series medium
|
||||||
\shape up
|
\shape up
|
||||||
|
@ -1630,9 +1630,10 @@ For the derivative
|
||||||
\uwave off
|
\uwave off
|
||||||
\noun off
|
\noun off
|
||||||
\color none
|
\color none
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
f(Te^{\hat{\xi}},p)=Te^{\hat{\xi}}p\approx Tp+D_{1}f(\xi)
|
Tp+D_{1}f(\xi)\approx f(Te^{\hat{\xi}},p)=Te^{\hat{\xi}}p
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -1661,6 +1662,11 @@ Te^{\hat{\xi}}p\approx T(I+\hat{\xi})p=Tp+T\hat{\xi}p
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $D_{1}f(\xi)=T\hat{\xi}p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
|
||||||
\begin_inset Note Note
|
\begin_inset Note Note
|
||||||
status collapsed
|
status collapsed
|
||||||
|
@ -1679,7 +1685,7 @@ T\hat{\xi}p=\left(T\hat{\xi}T^{-1}\right)Tp=\left(\Ad T\xihat\right)\left(Tp\rig
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
Hence, we need to show that
|
Hence, to complete the proof, we need to show that
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\xihat p=H(p)\xi\label{eq:Hp}
|
\xihat p=H(p)\xi\label{eq:Hp}
|
||||||
|
@ -4173,9 +4179,9 @@ so
|
||||||
.
|
.
|
||||||
Hence, the final derivative of an action in its first argument is
|
Hence, the final derivative of an action in its first argument is
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
\deriv{\left(Rp\right)}{\omega}=RH(p)=-R\Skew p
|
\deriv{\left(Rp\right)}{\omega}=RH(p)=-R\Skew p\label{eq:Rot3action}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -5027,6 +5033,601 @@ Re^{\Skew{\omega}} & t+R\left[v+\left(\omega\times v\right)/2\right]\\
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
The Sphere
|
||||||
|
\begin_inset Formula $S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsection
|
||||||
|
Definitions
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The sphere
|
||||||
|
\begin_inset Formula $S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the set of all unit vectors in
|
||||||
|
\begin_inset Formula $\Rthree$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, i.e., all directions in three-space:
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
S^{2}=\{p\in\Rthree|\left\Vert p\right\Vert =1\}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
The tangent space
|
||||||
|
\begin_inset Formula $T_{p}S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
at a point
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
consists of three-vectors
|
||||||
|
\begin_inset Formula $\xihat$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
such that
|
||||||
|
\begin_inset Formula $\xihat$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is tangent to
|
||||||
|
\begin_inset Formula $S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
at
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, i.e.,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
T_{p}S^{2}\define\left\{ \xihat\in\Rthree|p^{T}\xihat=0\right\}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
While not a Lie group, we can define an exponential map, which is given
|
||||||
|
in Ma et.
|
||||||
|
al
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
key "Ma01ijcv"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, as well as in this CVPR tutorial by Anuj Srivastava:
|
||||||
|
\begin_inset CommandInset href
|
||||||
|
LatexCommand href
|
||||||
|
name "http://stat.fsu.edu/~anuj/CVPR_Tutorial/Part2.pdf"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\exp_{p}\xihat=\cos\left(\left\Vert \xihat\right\Vert \right)p+\sin\left(\left\Vert \xihat\right\Vert \right)\frac{\xihat}{\left\Vert \xihat\right\Vert }
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
The latter also gives the inverse, i.e., get the tangent vector
|
||||||
|
\begin_inset Formula $z$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
to go from
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
to
|
||||||
|
\begin_inset Formula $q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
:
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
z=\log_{p}q=\frac{\theta}{\sin\theta}\left(q-p\cos\theta\right)p
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with
|
||||||
|
\begin_inset Formula $\theta=\cos^{-1}\left(p^{T}q\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsection
|
||||||
|
Local Coordinates
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
We can find a basis
|
||||||
|
\begin_inset Formula $B_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for the tangent space
|
||||||
|
\begin_inset Formula $T_{p}S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, with
|
||||||
|
\begin_inset Formula $B_{p}=\left[b_{1}|b_{2}\right]$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
a
|
||||||
|
\begin_inset Formula $3\times2$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
matrix, by either
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Enumerate
|
||||||
|
Decompose
|
||||||
|
\begin_inset Formula $p=QR$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, with
|
||||||
|
\begin_inset Formula $Q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
orthonormal and
|
||||||
|
\begin_inset Formula $R$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
of the form
|
||||||
|
\begin_inset Formula $[1\,0\,0]^{T}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and hence
|
||||||
|
\begin_inset Formula $p=Q_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The basis
|
||||||
|
\begin_inset Formula $B_{p}=\left[Q_{2}|Q_{3}\right]$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, i.e., the last two columns of
|
||||||
|
\begin_inset Formula $Q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Enumerate
|
||||||
|
Form
|
||||||
|
\begin_inset Formula $b_{1}=p\times a$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, with
|
||||||
|
\begin_inset Formula $a$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(consistently) chosen to be non-parallel to
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and
|
||||||
|
\begin_inset Formula $b_{2}=p\times b_{1}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status collapsed
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
To choose
|
||||||
|
\begin_inset Formula $a$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, one way is to divide the sphere into regions, e.g., pick the axis
|
||||||
|
\begin_inset Formula $e_{i}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
such that
|
||||||
|
\begin_inset Formula $e_{i}^{T}p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is smallest.
|
||||||
|
However, that leads to discontinuous boundaries.
|
||||||
|
Since
|
||||||
|
\begin_inset Formula $0\leq\left|e_{i}^{T}p\right|\leq1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for all
|
||||||
|
\begin_inset Formula $p\in S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, a better idea might be to use a mixture, e.g.,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
a=\frac{1}{2(x^{2}+y^{2}+z^{2})}\left[\begin{array}{c}
|
||||||
|
y^{2}+z^{2}\\
|
||||||
|
x^{2}+z^{2}\\
|
||||||
|
x^{2}+y^{2}
|
||||||
|
\end{array}\right]
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Now we can write
|
||||||
|
\begin_inset Formula $\xihat=B_{p}\xi$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with
|
||||||
|
\begin_inset Formula $\xi\in R^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
the 2D coordinate in the tangent plane basis
|
||||||
|
\begin_inset Formula $B_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsection
|
||||||
|
Retraction
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The exponential map uses
|
||||||
|
\begin_inset Formula $\cos$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $\sin$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, and is more than we need for optimization.
|
||||||
|
Suppose we have a point
|
||||||
|
\begin_inset Formula $p\in S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and a 3-vector
|
||||||
|
\begin_inset Formula $\xihat\in T_{p}S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, Absil
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
key "Absil07book"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
tells us we can simply add
|
||||||
|
\begin_inset Formula $\xihat$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
to
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and renormalize to get a new point
|
||||||
|
\begin_inset Formula $q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
on the sphere.
|
||||||
|
This is what he calls a
|
||||||
|
\series bold
|
||||||
|
retraction
|
||||||
|
\family roman
|
||||||
|
\series medium
|
||||||
|
\shape up
|
||||||
|
\size normal
|
||||||
|
\emph off
|
||||||
|
\bar no
|
||||||
|
\strikeout off
|
||||||
|
\uuline off
|
||||||
|
\uwave off
|
||||||
|
\noun off
|
||||||
|
\color none
|
||||||
|
|
||||||
|
\begin_inset Formula $\retract_{p}(\xihat)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\family default
|
||||||
|
\series default
|
||||||
|
\shape default
|
||||||
|
\size default
|
||||||
|
\emph default
|
||||||
|
\bar default
|
||||||
|
\strikeout default
|
||||||
|
\uuline default
|
||||||
|
\uwave default
|
||||||
|
\noun default
|
||||||
|
\color inherit
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
q=\retract_{p}(\xihat)=\frac{p+\xihat}{\left\Vert p+z\right\Vert }=\frac{p+\xihat}{\alpha}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with
|
||||||
|
\begin_inset Formula $\alpha$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
the norm of
|
||||||
|
\begin_inset Formula $p+\xihat$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
We can also define a retraction from local coordinates
|
||||||
|
\begin_inset Formula $\xi\in\Rtwo$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
:
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
q=\retract_{p}(\xi)=\frac{p+B_{p}\xi}{\left\Vert p+B_{p}\xi\right\Vert }=\frac{p+B_{p}\xi}{\alpha}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Since
|
||||||
|
\begin_inset Formula $\xihat$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is in the tangent space
|
||||||
|
\begin_inset Formula $T_{p}S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
at
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we have
|
||||||
|
\begin_inset Formula $p^{T}\xihat=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsubsection*
|
||||||
|
Inverse Retraction
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
If
|
||||||
|
\begin_inset Formula $\xihat=B_{p}\xi$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with
|
||||||
|
\begin_inset Formula $\xi\in R^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
the 2D coordinate in the tangent plane basis
|
||||||
|
\begin_inset Formula $B_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, we have
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\xi=\frac{B^{T}q}{p^{T}q}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Proof
|
||||||
|
We seek
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\alpha q=p+B_{p}\xi
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
If we multiply both sides with
|
||||||
|
\begin_inset Formula $B_{p}^{T}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(project on the basis
|
||||||
|
\begin_inset Formula $B_{p}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) we obtain
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\alpha B_{p}^{T}q=B_{p}^{T}p+B_{p}^{T}B_{p}\xi
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and because
|
||||||
|
\begin_inset Formula $B_{p}^{T}p=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $B_{p}^{T}B_{p}=I$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
we trivially obtain
|
||||||
|
\begin_inset Formula $\xi$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
as the scaled projection
|
||||||
|
\begin_inset Formula $B^{T}q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
:
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\xi=\alpha B^{T}q
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
To recover the scale factor
|
||||||
|
\begin_inset Formula $\alpha$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
we multiply with
|
||||||
|
\begin_inset Formula $p^{T}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
on both sides we have
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\alpha p^{T}q=p^{T}p+p^{T}B_{p}\xi
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and (since
|
||||||
|
\begin_inset Formula $p^{T}p=1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $p^{T}B_{p}\xi=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) we have
|
||||||
|
\begin_inset Formula $\alpha=1/(p^{T}q)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
The Essential Matrix Manifold
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
We parameterize essential matrices as a pair
|
||||||
|
\begin_inset Formula $(R,t)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, where
|
||||||
|
\begin_inset Formula $R\in\SOthree$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $t\in S^{2}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, the unit sphere.
|
||||||
|
The epipolar matrix is then given by
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
E=\Skew tR
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and the epipolar error given two corresponding points
|
||||||
|
\begin_inset Formula $a$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $b$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
e(R,t;a,b)=a^{T}Eb
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
We are of course interested in the derivative with respect to orientation
|
||||||
|
(using
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:Rot3action"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
)
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\frac{\partial(a^{T}[t]_{\times}Rb)}{\partial\omega}=a^{T}[t]_{\times}\frac{\partial(Rb)}{\partial\omega}=-a^{T}[t]_{\times}R\Skew b=-a^{T}E[b]_{\times}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and with respect to change in the direction
|
||||||
|
\begin_inset Formula $t$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\frac{\partial e(a^{T}[t]_{\times}Rb)}{\partial\xi}=a^{T}\frac{\partial(B\xi\times Rb)}{\partial v}=-a^{T}[Rb]_{\times}B
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where we made use of the fact that the retraction can be written as
|
||||||
|
\begin_inset Formula $t+B\xi$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, with
|
||||||
|
\begin_inset Formula $B$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
a local basis, and we made use of
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Dcross1"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
:
|
||||||
|
\family roman
|
||||||
|
\series medium
|
||||||
|
\shape up
|
||||||
|
\size normal
|
||||||
|
\emph off
|
||||||
|
\bar no
|
||||||
|
\strikeout off
|
||||||
|
\uuline off
|
||||||
|
\uwave off
|
||||||
|
\noun off
|
||||||
|
\color none
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\frac{\partial(a\times b)}{\partial a}=\Skew{-b}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
|
|
BIN
doc/math.pdf
BIN
doc/math.pdf
Binary file not shown.
475
doc/sphere.lyx
475
doc/sphere.lyx
|
@ -1,475 +0,0 @@
|
||||||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
|
||||||
\lyxformat 413
|
|
||||||
\begin_document
|
|
||||||
\begin_header
|
|
||||||
\textclass article
|
|
||||||
\use_default_options true
|
|
||||||
\maintain_unincluded_children false
|
|
||||||
\language english
|
|
||||||
\language_package default
|
|
||||||
\inputencoding auto
|
|
||||||
\fontencoding global
|
|
||||||
\font_roman default
|
|
||||||
\font_sans default
|
|
||||||
\font_typewriter default
|
|
||||||
\font_default_family default
|
|
||||||
\use_non_tex_fonts false
|
|
||||||
\font_sc false
|
|
||||||
\font_osf false
|
|
||||||
\font_sf_scale 100
|
|
||||||
\font_tt_scale 100
|
|
||||||
|
|
||||||
\graphics default
|
|
||||||
\default_output_format default
|
|
||||||
\output_sync 0
|
|
||||||
\bibtex_command default
|
|
||||||
\index_command default
|
|
||||||
\paperfontsize 11
|
|
||||||
\spacing single
|
|
||||||
\use_hyperref false
|
|
||||||
\papersize default
|
|
||||||
\use_geometry true
|
|
||||||
\use_amsmath 1
|
|
||||||
\use_esint 1
|
|
||||||
\use_mhchem 1
|
|
||||||
\use_mathdots 1
|
|
||||||
\cite_engine basic
|
|
||||||
\use_bibtopic false
|
|
||||||
\use_indices false
|
|
||||||
\paperorientation portrait
|
|
||||||
\suppress_date false
|
|
||||||
\use_refstyle 1
|
|
||||||
\index Index
|
|
||||||
\shortcut idx
|
|
||||||
\color #008000
|
|
||||||
\end_index
|
|
||||||
\leftmargin 3cm
|
|
||||||
\topmargin 3cm
|
|
||||||
\rightmargin 3cm
|
|
||||||
\bottommargin 3cm
|
|
||||||
\secnumdepth 3
|
|
||||||
\tocdepth 3
|
|
||||||
\paragraph_separation indent
|
|
||||||
\paragraph_indentation default
|
|
||||||
\quotes_language english
|
|
||||||
\papercolumns 1
|
|
||||||
\papersides 1
|
|
||||||
\paperpagestyle default
|
|
||||||
\tracking_changes false
|
|
||||||
\output_changes false
|
|
||||||
\html_math_output 0
|
|
||||||
\html_css_as_file 0
|
|
||||||
\html_be_strict false
|
|
||||||
\end_header
|
|
||||||
|
|
||||||
\begin_body
|
|
||||||
|
|
||||||
\begin_layout Title
|
|
||||||
Manifold Geometry of the Sphere
|
|
||||||
\begin_inset Formula $S^{2}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Author
|
|
||||||
Frank, Can, and Manohar
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
\begin_inset FormulaMacro
|
|
||||||
\newcommand{\xihat}{z}
|
|
||||||
{z}
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Subsubsection*
|
|
||||||
Retraction
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
Suppose we have a point
|
|
||||||
\begin_inset Formula $p\in S^{2}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and a 3-vector
|
|
||||||
\begin_inset Formula $\xihat$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, Absil
|
|
||||||
\begin_inset CommandInset citation
|
|
||||||
LatexCommand cite
|
|
||||||
key "Absil07book"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
tells us we can simply add
|
|
||||||
\begin_inset Formula $\xihat$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
to
|
|
||||||
\begin_inset Formula $p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and renormalize to get a new point
|
|
||||||
\begin_inset Formula $q$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
on the sphere.
|
|
||||||
This is what he calls a
|
|
||||||
\series bold
|
|
||||||
retraction
|
|
||||||
\family roman
|
|
||||||
\series medium
|
|
||||||
\shape up
|
|
||||||
\size normal
|
|
||||||
\emph off
|
|
||||||
\bar no
|
|
||||||
\strikeout off
|
|
||||||
\uuline off
|
|
||||||
\uwave off
|
|
||||||
\noun off
|
|
||||||
\color none
|
|
||||||
|
|
||||||
\begin_inset Formula $R_{p}(\xihat)$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
,
|
|
||||||
\family default
|
|
||||||
\series default
|
|
||||||
\shape default
|
|
||||||
\size default
|
|
||||||
\emph default
|
|
||||||
\bar default
|
|
||||||
\strikeout default
|
|
||||||
\uuline default
|
|
||||||
\uwave default
|
|
||||||
\noun default
|
|
||||||
\color inherit
|
|
||||||
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
q=R_{p}(\xihat)=\frac{p+\xihat}{\left\Vert p+z\right\Vert }=\frac{p+\xihat}{\alpha}
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
with
|
|
||||||
\begin_inset Formula $\alpha$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
the norm of
|
|
||||||
\begin_inset Formula $p+\xihat$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
The only restriction on
|
|
||||||
\begin_inset Formula $\xihat$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
is that it is in the tangent space
|
|
||||||
\begin_inset Formula $T_{p}S^{2}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
at
|
|
||||||
\begin_inset Formula $p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, i.e.,
|
|
||||||
\begin_inset Formula $p^{T}\xihat=0$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
Multiplying with
|
|
||||||
\begin_inset Formula $p^{T}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
on both sides we have
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\alpha p^{T}q=p^{T}p+p^{T}\xihat
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and (since
|
|
||||||
\begin_inset Formula $p^{T}p=1$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and
|
|
||||||
\begin_inset Formula $p^{T}\xihat=0$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
) we have
|
|
||||||
\begin_inset Formula $\alpha=1/(p^{T}q)$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Subsubsection*
|
|
||||||
Inverse
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
Suppose we are given points
|
|
||||||
\begin_inset Formula $p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and
|
|
||||||
\begin_inset Formula $q$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
on the sphere, what is the tangent vector
|
|
||||||
\begin_inset Formula $\xihat$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
that takes
|
|
||||||
\begin_inset Formula $p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
to
|
|
||||||
\begin_inset Formula $q$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
? We can find a basis
|
|
||||||
\begin_inset Formula $B$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
for the tangent space, with
|
|
||||||
\begin_inset Formula $B=\left[b_{1}|b_{2}\right]$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
a
|
|
||||||
\begin_inset Formula $3\times2$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
matrix, by either
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Enumerate
|
|
||||||
Decompose
|
|
||||||
\begin_inset Formula $p=QR$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, with
|
|
||||||
\begin_inset Formula $Q$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
orthonormal and
|
|
||||||
\begin_inset Formula $R$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
of the form
|
|
||||||
\begin_inset Formula $[1\,0\,0]^{T}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, and hence
|
|
||||||
\begin_inset Formula $p=Q_{1}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
The basis
|
|
||||||
\begin_inset Formula $B=\left[Q_{2}|Q_{3}\right]$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, i.e., the last two columns of
|
|
||||||
\begin_inset Formula $Q$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Enumerate
|
|
||||||
Form
|
|
||||||
\begin_inset Formula $b_{1}=p\times a$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, with
|
|
||||||
\begin_inset Formula $a$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
(consistently) chosen to be non-parallel to
|
|
||||||
\begin_inset Formula $p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, and
|
|
||||||
\begin_inset Formula $b_{2}=p\times b_{1}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
|
|
||||||
\begin_inset Note Note
|
|
||||||
status collapsed
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
To choose
|
|
||||||
\begin_inset Formula $a$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, one way is to divide the sphere into regions, e.g., pick the axis
|
|
||||||
\begin_inset Formula $e_{i}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
such that
|
|
||||||
\begin_inset Formula $e_{i}^{T}p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
is smallest.
|
|
||||||
However, that leads to discontinuous boundaries.
|
|
||||||
Since
|
|
||||||
\begin_inset Formula $0\leq\left|e_{i}^{T}p\right|\leq1$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
for all
|
|
||||||
\begin_inset Formula $p\in S^{2}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, a better idea might be to use a mixture, e.g.,
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
a=\frac{1}{2(x^{2}+y^{2}+z^{2})}\left[\begin{array}{c}
|
|
||||||
y^{2}+z^{2}\\
|
|
||||||
x^{2}+z^{2}\\
|
|
||||||
x^{2}+y^{2}
|
|
||||||
\end{array}\right]
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
Now, if
|
|
||||||
\begin_inset Formula $\xihat=B\xi$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
with
|
|
||||||
\begin_inset Formula $\xi\in R^{2}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
the 2D coordinate in the tangent plane basis
|
|
||||||
\begin_inset Formula $B$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
, we have
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\alpha q=p+\xihat=p+B\xi
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
If we multiply both sides with
|
|
||||||
\begin_inset Formula $B^{T}$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
(project on the basis
|
|
||||||
\begin_inset Formula $B$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
) we obtain
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\alpha B^{T}q=B^{T}p+B^{T}B\xi
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and because
|
|
||||||
\begin_inset Formula $B^{T}p=0$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
and
|
|
||||||
\begin_inset Formula $B^{T}B=I$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
we trivially obtain
|
|
||||||
\begin_inset Formula $\xi$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
as the scaled projection
|
|
||||||
\begin_inset Formula $B^{T}q$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
:
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\xi=\alpha B^{T}q=\frac{B^{T}q}{p^{T}q}
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Subsubsection*
|
|
||||||
Exponential Map
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
The exponential map itself is not so difficult, and is given in Ma01ijcv,
|
|
||||||
as well as in this CVPR tutorial by Anuj Srivastava:
|
|
||||||
\begin_inset CommandInset href
|
|
||||||
LatexCommand href
|
|
||||||
name "http://stat.fsu.edu/~anuj/CVPR_Tutorial/Part2.pdf"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
\exp_{p}\xihat=\cos\left(\left\Vert \xihat\right\Vert \right)p+\sin\left(\left\Vert \xihat\right\Vert \right)\frac{\xihat}{\left\Vert \xihat\right\Vert }
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
The latter also gives the inverse, i.e., get the tangent vector
|
|
||||||
\begin_inset Formula $z$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
to go from
|
|
||||||
\begin_inset Formula $p$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
to
|
|
||||||
\begin_inset Formula $q$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
:
|
|
||||||
\begin_inset Formula
|
|
||||||
\[
|
|
||||||
z=\log_{p}q=\frac{\theta}{\sin\theta}\left(q-p\cos\theta\right)p
|
|
||||||
\]
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
with
|
|
||||||
\begin_inset Formula $\theta=\cos^{-1}\left(p^{T}q\right)$
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
.
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Standard
|
|
||||||
\begin_inset CommandInset bibtex
|
|
||||||
LatexCommand bibtex
|
|
||||||
bibfiles "../../../papers/refs"
|
|
||||||
options "plain"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_body
|
|
||||||
\end_document
|
|
BIN
doc/sphere.pdf
BIN
doc/sphere.pdf
Binary file not shown.
Loading…
Reference in New Issue