update hybrid code to use -log(k) consistently
parent
ecbf3d872e
commit
ceb9496e7c
|
@ -36,7 +36,7 @@ HybridGaussianFactor::FactorValuePairs GetFactorValuePairs(
|
|||
// Check if conditional is pruned
|
||||
if (conditional) {
|
||||
// Assign log(\sqrt(|2πΣ|)) = -log(1 / sqrt(|2πΣ|))
|
||||
value = -conditional->logNormalizationConstant();
|
||||
value = conditional->logNormalizationConstant();
|
||||
}
|
||||
return {std::dynamic_pointer_cast<GaussianFactor>(conditional), value};
|
||||
};
|
||||
|
@ -51,14 +51,14 @@ HybridGaussianConditional::HybridGaussianConditional(
|
|||
discreteParents, GetFactorValuePairs(conditionals)),
|
||||
BaseConditional(continuousFrontals.size()),
|
||||
conditionals_(conditionals) {
|
||||
// Calculate logConstant_ as the minimum of the log normalizers of the
|
||||
// conditionals, by visiting the decision tree:
|
||||
// Calculate logConstant_ as the minimum of the negative-log normalizers of
|
||||
// the conditionals, by visiting the decision tree:
|
||||
logConstant_ = std::numeric_limits<double>::infinity();
|
||||
conditionals_.visit(
|
||||
[this](const GaussianConditional::shared_ptr &conditional) {
|
||||
if (conditional) {
|
||||
this->logConstant_ = std::min(
|
||||
this->logConstant_, -conditional->logNormalizationConstant());
|
||||
this->logConstant_, conditional->logNormalizationConstant());
|
||||
}
|
||||
});
|
||||
}
|
||||
|
@ -85,7 +85,7 @@ GaussianFactorGraphTree HybridGaussianConditional::asGaussianFactorGraphTree()
|
|||
// First check if conditional has not been pruned
|
||||
if (gc) {
|
||||
const double Cgm_Kgcm =
|
||||
-this->logConstant_ - gc->logNormalizationConstant();
|
||||
gc->logNormalizationConstant() - this->logConstant_;
|
||||
// If there is a difference in the covariances, we need to account for
|
||||
// that since the error is dependent on the mode.
|
||||
if (Cgm_Kgcm > 0.0) {
|
||||
|
@ -216,7 +216,7 @@ std::shared_ptr<HybridGaussianFactor> HybridGaussianConditional::likelihood(
|
|||
-> GaussianFactorValuePair {
|
||||
const auto likelihood_m = conditional->likelihood(given);
|
||||
const double Cgm_Kgcm =
|
||||
-logConstant_ - conditional->logNormalizationConstant();
|
||||
conditional->logNormalizationConstant() - logConstant_;
|
||||
if (Cgm_Kgcm == 0.0) {
|
||||
return {likelihood_m, 0.0};
|
||||
} else {
|
||||
|
|
|
@ -152,7 +152,7 @@ class GTSAM_EXPORT HybridGaussianConditional
|
|||
|
||||
/// The log normalization constant is max of the the individual
|
||||
/// log-normalization constants.
|
||||
double logNormalizationConstant() const override { return -logConstant_; }
|
||||
double logNormalizationConstant() const override { return logConstant_; }
|
||||
|
||||
/**
|
||||
* Create a likelihood factor for a hybrid Gaussian conditional,
|
||||
|
|
|
@ -329,9 +329,9 @@ static std::shared_ptr<Factor> createDiscreteFactor(
|
|||
|
||||
// Logspace version of:
|
||||
// exp(-factor->error(kEmpty)) / conditional->normalizationConstant();
|
||||
// We take negative of the logNormalizationConstant `log(k)`
|
||||
// to get `log(1/k) = log(\sqrt{|2πΣ|})`.
|
||||
return -factor->error(kEmpty) - conditional->logNormalizationConstant();
|
||||
// logNormalizationConstant gives `-log(k)`
|
||||
// which is `-log(k) = log(1/k) = log(\sqrt{|2πΣ|})`.
|
||||
return -factor->error(kEmpty) + conditional->logNormalizationConstant();
|
||||
};
|
||||
|
||||
AlgebraicDecisionTree<Key> logProbabilities(
|
||||
|
@ -355,8 +355,9 @@ static std::shared_ptr<Factor> createHybridGaussianFactor(
|
|||
auto hf = std::dynamic_pointer_cast<HessianFactor>(factor);
|
||||
if (!hf) throw std::runtime_error("Expected HessianFactor!");
|
||||
// Add 2.0 term since the constant term will be premultiplied by 0.5
|
||||
// as per the Hessian definition
|
||||
hf->constantTerm() += 2.0 * conditional->logNormalizationConstant();
|
||||
// as per the Hessian definition,
|
||||
// and negative since we want log(k)
|
||||
hf->constantTerm() += -2.0 * conditional->logNormalizationConstant();
|
||||
}
|
||||
return {factor, 0.0};
|
||||
};
|
||||
|
|
|
@ -180,12 +180,13 @@ TEST(HybridGaussianConditional, Error2) {
|
|||
|
||||
// Check result.
|
||||
DiscreteKeys discrete_keys{mode};
|
||||
double logNormalizer0 = -conditionals[0]->logNormalizationConstant();
|
||||
double logNormalizer1 = -conditionals[1]->logNormalizationConstant();
|
||||
double logNormalizer0 = conditionals[0]->logNormalizationConstant();
|
||||
double logNormalizer1 = conditionals[1]->logNormalizationConstant();
|
||||
double minLogNormalizer = std::min(logNormalizer0, logNormalizer1);
|
||||
|
||||
// Expected error is e(X) + log(|2πΣ|).
|
||||
// We normalize log(|2πΣ|) with min(logNormalizers) so it is non-negative.
|
||||
// Expected error is e(X) + log(sqrt(|2πΣ|)).
|
||||
// We normalize log(sqrt(|2πΣ|)) with min(logNormalizers)
|
||||
// so it is non-negative.
|
||||
std::vector<double> leaves = {
|
||||
conditionals[0]->error(vv) + logNormalizer0 - minLogNormalizer,
|
||||
conditionals[1]->error(vv) + logNormalizer1 - minLogNormalizer};
|
||||
|
@ -196,7 +197,7 @@ TEST(HybridGaussianConditional, Error2) {
|
|||
// Check for non-tree version.
|
||||
for (size_t mode : {0, 1}) {
|
||||
const HybridValues hv{vv, {{M(0), mode}}};
|
||||
EXPECT_DOUBLES_EQUAL(conditionals[mode]->error(vv) -
|
||||
EXPECT_DOUBLES_EQUAL(conditionals[mode]->error(vv) +
|
||||
conditionals[mode]->logNormalizationConstant() -
|
||||
minLogNormalizer,
|
||||
hybrid_conditional.error(hv), 1e-8);
|
||||
|
@ -230,8 +231,8 @@ TEST(HybridGaussianConditional, Likelihood2) {
|
|||
CHECK(jf1->rows() == 2);
|
||||
|
||||
// Check that the constant C1 is properly encoded in the JacobianFactor.
|
||||
const double C1 = hybrid_conditional.logNormalizationConstant() -
|
||||
conditionals[1]->logNormalizationConstant();
|
||||
const double C1 = conditionals[1]->logNormalizationConstant() -
|
||||
hybrid_conditional.logNormalizationConstant();
|
||||
const double c1 = std::sqrt(2.0 * C1);
|
||||
Vector expected_unwhitened(2);
|
||||
expected_unwhitened << 4.9 - 5.0, -c1;
|
||||
|
|
|
@ -773,8 +773,8 @@ static HybridGaussianFactorGraph CreateFactorGraph(
|
|||
// We take negative since we want
|
||||
// the underlying scalar to be log(\sqrt(|2πΣ|))
|
||||
std::vector<GaussianFactorValuePair> factors{
|
||||
{f0, -model0->logNormalizationConstant()},
|
||||
{f1, -model1->logNormalizationConstant()}};
|
||||
{f0, model0->logNormalizationConstant()},
|
||||
{f1, model1->logNormalizationConstant()}};
|
||||
HybridGaussianFactor motionFactor({X(0), X(1)}, m1, factors);
|
||||
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
|
|
@ -714,26 +714,26 @@ factor 6: P( m1 | m0 ):
|
|||
size: 3
|
||||
conditional 0: Hybrid P( x0 | x1 m0)
|
||||
Discrete Keys = (m0, 2),
|
||||
logNormalizationConstant: 1.38862
|
||||
logNormalizationConstant: -1.38862
|
||||
|
||||
Choice(m0)
|
||||
0 Leaf p(x0 | x1)
|
||||
R = [ 10.0499 ]
|
||||
S[x1] = [ -0.0995037 ]
|
||||
d = [ -9.85087 ]
|
||||
logNormalizationConstant: 1.38862
|
||||
logNormalizationConstant: -1.38862
|
||||
No noise model
|
||||
|
||||
1 Leaf p(x0 | x1)
|
||||
R = [ 10.0499 ]
|
||||
S[x1] = [ -0.0995037 ]
|
||||
d = [ -9.95037 ]
|
||||
logNormalizationConstant: 1.38862
|
||||
logNormalizationConstant: -1.38862
|
||||
No noise model
|
||||
|
||||
conditional 1: Hybrid P( x1 | x2 m0 m1)
|
||||
Discrete Keys = (m0, 2), (m1, 2),
|
||||
logNormalizationConstant: 1.3935
|
||||
logNormalizationConstant: -1.3935
|
||||
|
||||
Choice(m1)
|
||||
0 Choice(m0)
|
||||
|
@ -741,14 +741,14 @@ conditional 1: Hybrid P( x1 | x2 m0 m1)
|
|||
R = [ 10.099 ]
|
||||
S[x2] = [ -0.0990196 ]
|
||||
d = [ -9.99901 ]
|
||||
logNormalizationConstant: 1.3935
|
||||
logNormalizationConstant: -1.3935
|
||||
No noise model
|
||||
|
||||
0 1 Leaf p(x1 | x2)
|
||||
R = [ 10.099 ]
|
||||
S[x2] = [ -0.0990196 ]
|
||||
d = [ -9.90098 ]
|
||||
logNormalizationConstant: 1.3935
|
||||
logNormalizationConstant: -1.3935
|
||||
No noise model
|
||||
|
||||
1 Choice(m0)
|
||||
|
@ -756,19 +756,19 @@ conditional 1: Hybrid P( x1 | x2 m0 m1)
|
|||
R = [ 10.099 ]
|
||||
S[x2] = [ -0.0990196 ]
|
||||
d = [ -10.098 ]
|
||||
logNormalizationConstant: 1.3935
|
||||
logNormalizationConstant: -1.3935
|
||||
No noise model
|
||||
|
||||
1 1 Leaf p(x1 | x2)
|
||||
R = [ 10.099 ]
|
||||
S[x2] = [ -0.0990196 ]
|
||||
d = [ -10 ]
|
||||
logNormalizationConstant: 1.3935
|
||||
logNormalizationConstant: -1.3935
|
||||
No noise model
|
||||
|
||||
conditional 2: Hybrid P( x2 | m0 m1)
|
||||
Discrete Keys = (m0, 2), (m1, 2),
|
||||
logNormalizationConstant: 1.38857
|
||||
logNormalizationConstant: -1.38857
|
||||
|
||||
Choice(m1)
|
||||
0 Choice(m0)
|
||||
|
@ -777,7 +777,7 @@ conditional 2: Hybrid P( x2 | m0 m1)
|
|||
d = [ -10.1489 ]
|
||||
mean: 1 elements
|
||||
x2: -1.0099
|
||||
logNormalizationConstant: 1.38857
|
||||
logNormalizationConstant: -1.38857
|
||||
No noise model
|
||||
|
||||
0 1 Leaf p(x2)
|
||||
|
@ -785,7 +785,7 @@ conditional 2: Hybrid P( x2 | m0 m1)
|
|||
d = [ -10.1479 ]
|
||||
mean: 1 elements
|
||||
x2: -1.0098
|
||||
logNormalizationConstant: 1.38857
|
||||
logNormalizationConstant: -1.38857
|
||||
No noise model
|
||||
|
||||
1 Choice(m0)
|
||||
|
@ -794,7 +794,7 @@ conditional 2: Hybrid P( x2 | m0 m1)
|
|||
d = [ -10.0504 ]
|
||||
mean: 1 elements
|
||||
x2: -1.0001
|
||||
logNormalizationConstant: 1.38857
|
||||
logNormalizationConstant: -1.38857
|
||||
No noise model
|
||||
|
||||
1 1 Leaf p(x2)
|
||||
|
@ -802,7 +802,7 @@ conditional 2: Hybrid P( x2 | m0 m1)
|
|||
d = [ -10.0494 ]
|
||||
mean: 1 elements
|
||||
x2: -1
|
||||
logNormalizationConstant: 1.38857
|
||||
logNormalizationConstant: -1.38857
|
||||
No noise model
|
||||
|
||||
)";
|
||||
|
@ -903,8 +903,8 @@ static HybridNonlinearFactorGraph CreateFactorGraph(
|
|||
// We take negative since we want
|
||||
// the underlying scalar to be log(\sqrt(|2πΣ|))
|
||||
std::vector<NonlinearFactorValuePair> factors{
|
||||
{f0, -model0->logNormalizationConstant()},
|
||||
{f1, -model1->logNormalizationConstant()}};
|
||||
{f0, model0->logNormalizationConstant()},
|
||||
{f1, model1->logNormalizationConstant()}};
|
||||
|
||||
HybridNonlinearFactor mixtureFactor({X(0), X(1)}, m1, factors);
|
||||
|
||||
|
|
Loading…
Reference in New Issue