added script to run and save tests in a simplified way

release/4.3a0
djensen3 2014-05-01 12:56:24 -04:00
parent 32e1a8f994
commit ce13807d10
3 changed files with 257 additions and 57 deletions

View File

@ -20,6 +20,8 @@ virtual class gtsam::NonlinearFactor;
virtual class gtsam::GaussianFactor;
virtual class gtsam::HessianFactor;
virtual class gtsam::JacobianFactor;
virtual class gtsam::SmartFactorBase;
virtual class gtsam::SmartProjectionFactor;
class gtsam::GaussianFactorGraph;
class gtsam::NonlinearFactorGraph;
class gtsam::Ordering;
@ -376,6 +378,26 @@ virtual class SmartRangeFactor : gtsam::NoiseModelFactor {
};
#include <gtsam_unstable/slam/SmartFactorBase.h>
template<POSE, CALIBRATION, D>
virtual class SmartFactorBase : gtsam::NonlinearFactor {
SmartFactorBase(const POSE& body_P_sensor);
void add(const Point2& measured_i, const Key& poseKey_i,
const SharedNoiseModel& noise_i);
void serialize() const;
};
#include <gtsam_unstable/slam/SmartProjectionFactor.h>
template<POSE, LANDMARK, CALIBRATION, D>
virtual class SmartProjectionFactor : gtsam::SmartFactorBase {
SmartProjectionFactor(double rankTol, double linThreshold,
bool manageDegeneracy, bool enableEPI, const POSE& body_P_sensor);
void serialize() const;
};
#include <gtsam_unstable/slam/SmartProjectionPoseFactor.h>
template<POSE = {gtsam::Pose3},LANDMARK = {gtsam::Point3},CALIBRATION = {gtsam::Cal3_S2}>
virtual class SmartProjectionPoseFactor : gtsam::SmartProjectionFactor {
@ -386,12 +408,9 @@ virtual class SmartProjectionPoseFactor : gtsam::SmartProjectionFactor {
//void add(gtsam::Point2 measured_i, size_t poseKey_i, gtsam::SharedNoiseModel noise_i, CALIBRATION* K_i);
// enabling serialization functionality
// void serialize() const;
void serialize() const;
};
//typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2 > SmartProjectionPose3Factor;
#include <gtsam/slam/RangeFactor.h>
template<POSE, POINT>
virtual class RangeFactor : gtsam::NonlinearFactor {

View File

@ -7,53 +7,56 @@ import gtsam.*;
% Authors: Luca Carlone, David Jensen
% Date: 2014/4/6
clc
clear all
close all
saveResults = 0;
%% Configuration
options.useRealData = 1; % controls whether or not to use the real data (if available) as the ground truth traj
options.includeBetweenFactors = 0; % if true, BetweenFactors will be added between consecutive poses
options.includeIMUFactors = 1; % if true, IMU factors will be added between consecutive states (biases, poses, velocities)
options.imuFactorType = 2; % Set to 1 or 2 to use IMU type 1 or type 2 factors (will default to type 1)
options.imuNonzeroBias = 1; % if true, a nonzero bias is applied to IMU measurements
options.includeCameraFactors = 0; % not fully implemented yet
numberOfLandmarks = 10; % Total number of visual landmarks, used for camera factors
options.includeGPSFactors = 0; % if true, GPS factors will be added as priors to poses
options.gpsStartPose = 100; % Pose number to start including GPS factors at
options.trajectoryLength = 209;%209; % length of the ground truth trajectory
options.subsampleStep = 20; % number of poses to skip when using real data (to reduce computation on long trajectories)
numMonteCarloRuns = 20; % number of Monte Carlo runs to perform
%% Camera metadata
K = Cal3_S2(500,500,0,640/2,480/2); % Camera calibration
cameraMeasurementNoiseSigma = 1.0;
cameraMeasurementNoise = noiseModel.Isotropic.Sigma(2,cameraMeasurementNoiseSigma);
% Create landmarks
if options.includeCameraFactors == 1
for i = 1:numberOfLandmarks
gtLandmarkPoints(i) = Point3( ...
... % uniformly distributed in the x axis along 120% of the trajectory length, starting after 15 poses
[rand()*20*(options.trajectoryLength*1.2) + 15*20; ...
randn()*20; ... % normally distributed in the y axis with a sigma of 20
randn()*20]); % normally distributed in the z axis with a sigma of 20
end
% Check for an extneral configuration, used when running multiple tests
if ~exist('externallyConfigured', 'var')
clc
clear all
close all
saveResults = 0;
%% Configuration
% General options
options.useRealData = 1; % controls whether or not to use the real data (if available) as the ground truth traj
options.includeBetweenFactors = 0; % if true, BetweenFactors will be added between consecutive poses
options.includeIMUFactors = 1; % if true, IMU factors will be added between consecutive states (biases, poses, velocities)
options.imuFactorType = 2; % Set to 1 or 2 to use IMU type 1 or type 2 factors (will default to type 1)
options.imuNonzeroBias = 0; % if true, a nonzero bias is applied to IMU measurements
options.includeCameraFactors = 0; % not fully implemented yet
numberOfLandmarks = 10; % Total number of visual landmarks, used for camera factors
options.includeGPSFactors = 0; % if true, GPS factors will be added as priors to poses
options.gpsStartPose = 100; % Pose number to start including GPS factors at
options.trajectoryLength = 209;%209; % length of the ground truth trajectory
options.subsampleStep = 20; % number of poses to skip when using real data (to reduce computation on long trajectories)
numMonteCarloRuns = 5; % number of Monte Carlo runs to perform
% Noise values to be adjusted
sigma_ang = 1e-2; % std. deviation for rotational noise, typical 1e-2
sigma_cart = 1e-1; % std. deviation for translational noise, typical 1e-1
sigma_accel = 1e-1; % std. deviation for accelerometer noise, typical 1e-3
sigma_gyro = 1e-5; % std. deviation for gyroscope noise, typical 1e-5
sigma_accelBias = 1e-4; % std. deviation for added accelerometer constant bias, typical 1e-3
sigma_gyroBias = 1e-6; % std. deviation for added gyroscope constant bias, typical 1e-5
sigma_gps = 1e-4; % std. deviation for noise in GPS position measurements, typical 1e-4
% Set log files
testName = sprintf('sa-%1.2g-sc-%1.2g-sacc-%1.2g-sg-%1.2g',sigma_ang,sigma_cart,sigma_accel,sigma_gyro)
folderName = 'results/'
else
fprintf('Tests have been externally configured.\n');
end
%% Imu metadata
sigma_accel = 1e-3; % std. deviation for accelerometer noise, typical 1e-3
sigma_gyro = 1e-5; % std. deviation for gyroscope noise, typical 1e-5
sigma_accelBias = 1e-4; % std. deviation for added accelerometer constant bias, typical 1e-3
sigma_gyroBias = 1e-6; % std. deviation for added gyroscope constant bias, typical 1e-5
%% Between metadata
noiseVectorPose = [sigma_ang * ones(3,1); sigma_cart * ones(3,1)];
noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose);
%% Imu metadata
metadata.imu.epsBias = 1e-10; % was 1e-7
metadata.imu.g = [0;0;0];
metadata.imu.omegaCoriolis = [0;0;0];
@ -78,20 +81,26 @@ noisePriorBias = noiseModel.Diagonal.Sigmas(metadata.imu.BiasAccOmegaInit);
noiseVectorAccel = metadata.imu.AccelerometerSigma * ones(3,1);
noiseVectorGyro = metadata.imu.GyroscopeSigma * ones(3,1);
%% Between metadata
sigma_ang = 1e-2; % std. deviation for rotational noise, typical 1e-2
sigma_cart = 1e-1; % std. deviation for translational noise, typical 1e-1
noiseVectorPose = [sigma_ang * ones(3,1); sigma_cart * ones(3,1)];
noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose);
%% GPS metadata
sigma_gps = 1e-4; % std. deviation for noise in GPS position measurements, typical 1e-4
noiseVectorGPS = sigma_gps * ones(3,1);
noiseGPS = noiseModel.Diagonal.Precisions([zeros(3,1); 1/sigma_gps^2 * ones(3,1)]);
%% Set log files
testName = sprintf('sa-%1.2g-sc-%1.2g-sacc-%1.2g-sg-%1.2g',sigma_ang,sigma_cart,sigma_accel,sigma_gyro)
folderName = 'results/'
%% Camera metadata
K = Cal3_S2(500,500,0,640/2,480/2); % Camera calibration
cameraMeasurementNoiseSigma = 1.0;
cameraMeasurementNoise = noiseModel.Isotropic.Sigma(2,cameraMeasurementNoiseSigma);
% Create landmarks
if options.includeCameraFactors == 1
for i = 1:numberOfLandmarks
gtLandmarkPoints(i) = Point3( ...
... % uniformly distributed in the x axis along 120% of the trajectory length, starting after 15 poses
[rand()*20*(options.trajectoryLength*1.2) + 15*20; ...
randn()*20; ... % normally distributed in the y axis with a sigma of 20
randn()*20]); % normally distributed in the z axis with a sigma of 20
end
end
%% Create ground truth trajectory and measurements
[gtValues, gtMeasurements] = imuSimulator.covarianceAnalysisCreateTrajectory(options, metadata);

View File

@ -0,0 +1,172 @@
% use this script to easily run and save results for multiple consistency
% tests without having to pay attention to the computer every 5 minutes
import gtsam.*;
resultsDir = 'results/'
if (~exist(resultsDir, 'dir'))
mkdir(resultsDir);
end
testOptions = [ ...
% 1 2 3 4 5 6 7 8 9 10 11 12
% RealData? Between? IMU? IMUType Bias? Camera? #LndMrk GPS? StrtPose TrajLength Subsample #MCRuns
%1 0 1 2 0 0 10 0 100 209 20 100 ;... % 1
%1 0 1 2 0 0 10 0 100 209 20 100 ;... % 2
% 1 0 1 2 0 0 10 0 100 209 20 100 ;... % 3
%1 0 1 2 0 0 10 0 100 209 20 100 ;... % 4
%1 0 1 2 0 0 10 0 100 209 20 100 ;... % 5
%1 0 1 2 0 0 10 0 100 209 20 100 ;... % 6
% 1 0 1 2 0 0 10 0 100 209 20 100 ;... % 7
1 0 1 2 1 0 10 0 100 209 20 100 ;... % 8
1 0 1 2 1 0 10 0 100 209 20 100 ]; % 9
noises = [ ...
% 1 2 3 4 5 6 7
% sigma_ang sigma_cart sigma_accel sigma_gyro sigma_accelBias sigma_gyroBias sigma_gps
%1e-2 1e-1 1e-3 1e-5 0 0 1e-4;... % 1
%1e-2 1e-1 1e-2 1e-5 0 0 1e-4;... % 2
% 1e-2 1e-1 1e-1 1e-5 0 0 1e-4;... % 3
%1e-2 1e-1 1e-3 1e-4 0 0 1e-4;... % 4
%1e-2 1e-1 1e-3 1e-3 0 0 1e-4;... % 5
%1e-2 1e-1 1e-3 1e-2 0 0 1e-4;... % 6
% 1e-2 1e-1 1e-3 1e-1 0 0 1e-4;... % 7
1e-2 1e-1 1e-3 1e-5 1e-3 1e-5 1e-4;... % 8
1e-2 1e-1 1e-3 1e-5 1e-4 1e-6 1e-4]; % 9
if(size(testOptions,1) ~= size(noises,1))
error('testOptions and noises do not have same number of rows');
end
% Set flag so the script knows there is an external configuration
externallyConfigured = 1;
% Set the flag to save the results
saveResults = 1;
errorRuns = [];
% Go through tests
for i = 1:size(testOptions,1)
% Clean up from last test
close all;
%clc;
% Set up variables for test
options.useRealData = testOptions(i,1);
options.includeBetweenFactors = testOptions(i,2);
options.includeIMUFactors = testOptions(i,3);
options.imuFactorType = testOptions(i,4);
options.imuNonzeroBias = testOptions(i,5);
options.includeCameraFactors = testOptions(i,6);
numberOfLandmarks = testOptions(i,7);
options.includeGPSFactors = testOptions(i,8);
options.gpsStartPose = testOptions(i,9);
options.trajectoryLength = testOptions(i,10);
options.subsampleStep = testOptions(i,11);
numMonteCarloRuns = testOptions(i,12);
sigma_ang = noises(i,1);
sigma_cart = noises(i,2);
sigma_accel = noises(i,3);
sigma_gyro = noises(i,4);
sigma_accelBias = noises(i,5);
sigma_gyroBias = noises(i,6);
sigma_gps = noises(i,7);
% Create folder name
f_between = '';
f_imu = '';
f_bias = '';
f_gps = '';
f_camera = '';
f_runs = '';
if (options.includeBetweenFactors == 1);
f_between = 'between_';
end
if (options.includeIMUFactors == 1)
f_imu = sprintf('imu%d_', options.imuFactorType);
if (options.imuNonzeroBias == 1);
f_bias = sprintf('bias_a%1.2g_g%1.2g_', sigma_accelBias, sigma_gyroBias);
end
end
if (options.includeGPSFactors == 1);
f_between = sprintf('gps_%d_', gpsStartPose);
end
if (options.includeCameraFactors == 1)
f_camera = sprintf('camera_%d_', numberOfLandmarks);
end
f_runs = sprintf('mc%d', numMonteCarloRuns);
folderName = [resultsDir f_between f_imu f_bias f_gps f_camera f_runs '/'];
% make folder if it doesnt exist
if (~exist(folderName, 'dir'))
mkdir(folderName);
end
testName = sprintf('sa-%1.2g-sc-%1.2g-sacc-%1.2g-sg-%1.2g',sigma_ang,sigma_cart,sigma_accel,sigma_gyro);
% Run the test
fprintf('Test %d\n\tResults will be saved to:\n\t%s\n\trunning...\n', i, folderName);
fprintf('Test Name: %s\n', testName);
try
imuSimulator.covarianceAnalysisBetween;
catch
errorRuns = [errorRuns i];
fprintf('\n*****\n Something went wrong, most likely indeterminant linear system error.\n');
disp('Test Options:\n');
disp(testOptions(i,:));
disp('Noises');
disp(noises(i,:));
fprintf('\n*****\n\n');
end
end
% Print error summary
fprintf('*************************\n');
fprintf('%d Runs failed due to errors (data not collected for failed runs)\n', length(errorRuns));
for i = 1:length(errorRuns)
k = errorRuns(i);
fprintf('\nTest %d:\n', k);
fprintf(' options.useRealData = %d\n', testOptions(k,1));
fprintf(' options.includeBetweenFactors = %d\n', testOptions(k,2));
fprintf(' options.includeIMUFactors = %d\n', testOptions(k,3));
fprintf(' options.imuFactorType = %d\n', testOptions(k,4));
fprintf(' options.imuNonzeroBias = %d\n', testOptions(k,5));
fprintf(' options.includeCameraFactors = %d\n', testOptions(k,6));
fprintf(' numberOfLandmarks = %d\n', testOptions(k,7));
fprintf(' options.includeGPSFactors = %d\n', testOptions(k,8));
fprintf(' options.gpsStartPose = %d\n', testOptions(k,9));
fprintf(' options.trajectoryLength = %d\n', testOptions(k,10));
fprintf(' options.subsampleStep = %d\n', testOptions(k,11));
fprintf(' numMonteCarloRuns = %d\n', testOptions(k,12));
fprintf('\n');
fprintf(' sigma_ang = %f\n', noises(i,1));
fprintf(' sigma_cart = %f\n', noises(i,2));
fprintf(' sigma_accel = %f\n', noises(i,3));
fprintf(' sigma_gyro = %f\n', noises(i,4));
fprintf(' sigma_accelBias = %f\n', noises(i,5));
fprintf(' sigma_gyroBias = %f\n', noises(i,6));
fprintf(' sigma_gps = %f\n', noises(i,7));
end