remove augment method in favor of conversion
parent
98a2668fb1
commit
cd9ee08457
|
@ -200,27 +200,24 @@ std::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
|
|||
const GaussianMixtureFactor::Factors likelihoods(
|
||||
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
|
||||
const auto likelihood_m = conditional->likelihood(given);
|
||||
const double Cgm_Kgcm =
|
||||
logConstant_ - conditional->logNormalizationConstant();
|
||||
if (Cgm_Kgcm == 0.0) {
|
||||
return likelihood_m;
|
||||
});
|
||||
|
||||
// First compute all the sqrt(|2 pi Sigma|) terms
|
||||
auto computeLogNormalizers = [](const GaussianFactor::shared_ptr &gf) {
|
||||
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||
// If we have, say, a Hessian factor, then no need to do anything
|
||||
if (!jf) return 0.0;
|
||||
|
||||
auto model = jf->get_model();
|
||||
// If there is no noise model, there is nothing to do.
|
||||
if (!model) {
|
||||
return 0.0;
|
||||
} else {
|
||||
// Add a constant factor to the likelihood in case the noise models
|
||||
// are not all equal.
|
||||
GaussianFactorGraph gfg;
|
||||
gfg.push_back(likelihood_m);
|
||||
Vector c(1);
|
||||
c << std::sqrt(2.0 * Cgm_Kgcm);
|
||||
auto constantFactor = std::make_shared<JacobianFactor>(c);
|
||||
gfg.push_back(constantFactor);
|
||||
return std::make_shared<JacobianFactor>(gfg);
|
||||
}
|
||||
return ComputeLogNormalizer(model);
|
||||
};
|
||||
|
||||
AlgebraicDecisionTree<Key> log_normalizers =
|
||||
DecisionTree<Key, double>(likelihoods, computeLogNormalizers);
|
||||
});
|
||||
return std::make_shared<GaussianMixtureFactor>(
|
||||
continuousParentKeys, discreteParentKeys, likelihoods, log_normalizers);
|
||||
continuousParentKeys, discreteParentKeys, likelihoods);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -28,55 +28,11 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Helper function to augment the [A|b] matrices in the factor components
|
||||
* with the normalizer values.
|
||||
* This is done by storing the normalizer value in
|
||||
* the `b` vector as an additional row.
|
||||
*
|
||||
* @param factors DecisionTree of GaussianFactor shared pointers.
|
||||
* @param logNormalizers Tree of log-normalizers corresponding to each
|
||||
* Gaussian factor in factors.
|
||||
* @return GaussianMixtureFactor::Factors
|
||||
*/
|
||||
GaussianMixtureFactor::Factors augment(
|
||||
const GaussianMixtureFactor::Factors &factors,
|
||||
const AlgebraicDecisionTree<Key> &logNormalizers) {
|
||||
// Find the minimum value so we can "proselytize" to positive values.
|
||||
// Done because we can't have sqrt of negative numbers.
|
||||
double min_log_normalizer = logNormalizers.min();
|
||||
AlgebraicDecisionTree<Key> log_normalizers = logNormalizers.apply(
|
||||
[&min_log_normalizer](double n) { return n - min_log_normalizer; });
|
||||
|
||||
// Finally, update the [A|b] matrices.
|
||||
auto update = [&log_normalizers](
|
||||
const Assignment<Key> &assignment,
|
||||
const GaussianMixtureFactor::sharedFactor &gf) {
|
||||
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
|
||||
if (!jf) return gf;
|
||||
// If the log_normalizer is 0, do nothing
|
||||
if (log_normalizers(assignment) == 0.0) return gf;
|
||||
|
||||
GaussianFactorGraph gfg;
|
||||
gfg.push_back(jf);
|
||||
|
||||
Vector c(1);
|
||||
c << std::sqrt(log_normalizers(assignment));
|
||||
auto constantFactor = std::make_shared<JacobianFactor>(c);
|
||||
|
||||
gfg.push_back(constantFactor);
|
||||
return std::dynamic_pointer_cast<GaussianFactor>(
|
||||
std::make_shared<JacobianFactor>(gfg));
|
||||
};
|
||||
return factors.apply(update);
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
GaussianMixtureFactor::GaussianMixtureFactor(
|
||||
const KeyVector &continuousKeys, const DiscreteKeys &discreteKeys,
|
||||
const Factors &factors, const AlgebraicDecisionTree<Key> &logNormalizers)
|
||||
: Base(continuousKeys, discreteKeys),
|
||||
factors_(augment(factors, logNormalizers)) {}
|
||||
GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||
const DiscreteKeys &discreteKeys,
|
||||
const Factors &factors)
|
||||
: Base(continuousKeys, discreteKeys), factors_(factors) {}
|
||||
|
||||
/* *******************************************************************************/
|
||||
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
|
||||
|
|
|
@ -82,14 +82,10 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
|||
* their cardinalities.
|
||||
* @param factors The decision tree of Gaussian factors stored as the mixture
|
||||
* density.
|
||||
* @param logNormalizers Tree of log-normalizers corresponding to each
|
||||
* Gaussian factor in factors.
|
||||
*/
|
||||
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||
const DiscreteKeys &discreteKeys,
|
||||
const Factors &factors,
|
||||
const AlgebraicDecisionTree<Key> &logNormalizers =
|
||||
AlgebraicDecisionTree<Key>(0.0));
|
||||
const Factors &factors);
|
||||
|
||||
/**
|
||||
* @brief Construct a new GaussianMixtureFactor object using a vector of
|
||||
|
@ -98,16 +94,12 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
|
|||
* @param continuousKeys Vector of keys for continuous factors.
|
||||
* @param discreteKeys Vector of discrete keys.
|
||||
* @param factors Vector of gaussian factor shared pointers.
|
||||
* @param logNormalizers Tree of log-normalizers corresponding to each
|
||||
* Gaussian factor in factors.
|
||||
*/
|
||||
GaussianMixtureFactor(const KeyVector &continuousKeys,
|
||||
const DiscreteKeys &discreteKeys,
|
||||
const std::vector<sharedFactor> &factors,
|
||||
const AlgebraicDecisionTree<Key> &logNormalizers =
|
||||
AlgebraicDecisionTree<Key>(0.0))
|
||||
const std::vector<sharedFactor> &factors)
|
||||
: GaussianMixtureFactor(continuousKeys, discreteKeys,
|
||||
Factors(discreteKeys, factors), logNormalizers) {}
|
||||
Factors(discreteKeys, factors)) {}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
|
|
Loading…
Reference in New Issue