diff --git a/python/gtsam/examples/SFMExample.py b/python/gtsam/examples/SFMExample.py index f0c4c82ba..87bb3cb87 100644 --- a/python/gtsam/examples/SFMExample.py +++ b/python/gtsam/examples/SFMExample.py @@ -8,7 +8,6 @@ See LICENSE for the license information A structure-from-motion problem on a simulated dataset """ -from __future__ import print_function import gtsam import matplotlib.pyplot as plt @@ -89,7 +88,7 @@ def main(): point_noise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1) factor = PriorFactorPoint3(L(0), points[0], point_noise) graph.push_back(factor) - graph.print_('Factor Graph:\n') + graph.print('Factor Graph:\n') # Create the data structure to hold the initial estimate to the solution # Intentionally initialize the variables off from the ground truth @@ -100,7 +99,7 @@ def main(): for j, point in enumerate(points): transformed_point = point + 0.1*np.random.randn(3) initial_estimate.insert(L(j), transformed_point) - initial_estimate.print_('Initial Estimates:\n') + initial_estimate.print('Initial Estimates:\n') # Optimize the graph and print results params = gtsam.DoglegParams() @@ -108,7 +107,7 @@ def main(): optimizer = DoglegOptimizer(graph, initial_estimate, params) print('Optimizing:') result = optimizer.optimize() - result.print_('Final results:\n') + result.print('Final results:\n') print('initial error = {}'.format(graph.error(initial_estimate))) print('final error = {}'.format(graph.error(result)))