Merge branch 'hybrid-error-scalars' into hybrid-enum
commit
ccebd38146
|
|
@ -55,6 +55,15 @@ HybridGaussianConditional::conditionals() const {
|
|||
return conditionals_;
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
HybridGaussianConditional::HybridGaussianConditional(
|
||||
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
|
||||
const DiscreteKeys &discreteParents,
|
||||
const std::vector<GaussianConditional::shared_ptr> &conditionals)
|
||||
: HybridGaussianConditional(continuousFrontals, continuousParents,
|
||||
discreteParents,
|
||||
Conditionals(discreteParents, conditionals)) {}
|
||||
|
||||
/* *******************************************************************************/
|
||||
// TODO(dellaert): This is copy/paste: HybridGaussianConditional should be
|
||||
// derived from HybridGaussianFactor, no?
|
||||
|
|
|
|||
|
|
@ -106,6 +106,20 @@ class GTSAM_EXPORT HybridGaussianConditional
|
|||
const DiscreteKeys &discreteParents,
|
||||
const Conditionals &conditionals);
|
||||
|
||||
/**
|
||||
* @brief Make a Gaussian Mixture from a vector of Gaussian conditionals.
|
||||
* The DecisionTree-based constructor is preferred over this one.
|
||||
*
|
||||
* @param continuousFrontals The continuous frontal variables
|
||||
* @param continuousParents The continuous parent variables
|
||||
* @param discreteParents Discrete parents variables
|
||||
* @param conditionals Vector of conditionals
|
||||
*/
|
||||
HybridGaussianConditional(
|
||||
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
|
||||
const DiscreteKeys &discreteParents,
|
||||
const std::vector<GaussianConditional::shared_ptr> &conditionals);
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
|
@ -247,7 +261,7 @@ class GTSAM_EXPORT HybridGaussianConditional
|
|||
#endif
|
||||
};
|
||||
|
||||
/// Return the DiscreteKeys vector as a set.
|
||||
/// Return the DiscreteKey vector as a set.
|
||||
std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &discreteKeys);
|
||||
|
||||
// traits
|
||||
|
|
|
|||
|
|
@ -76,7 +76,7 @@ virtual class HybridConditional {
|
|||
class HybridGaussianFactor : gtsam::HybridFactor {
|
||||
HybridGaussianFactor(
|
||||
const gtsam::KeyVector& continuousKeys,
|
||||
const gtsam::DiscreteKeys& discreteKeys,
|
||||
const gtsam::DiscreteKey& discreteKey,
|
||||
const std::vector<std::pair<gtsam::GaussianFactor::shared_ptr, double>>&
|
||||
factorsList);
|
||||
|
||||
|
|
@ -91,8 +91,12 @@ class HybridGaussianConditional : gtsam::HybridFactor {
|
|||
const gtsam::KeyVector& continuousFrontals,
|
||||
const gtsam::KeyVector& continuousParents,
|
||||
const gtsam::DiscreteKeys& discreteParents,
|
||||
const std::vector<gtsam::GaussianConditional::shared_ptr>&
|
||||
conditionalsList);
|
||||
const gtsam::HybridGaussianConditional::Conditionals& conditionals);
|
||||
HybridGaussianConditional(
|
||||
const gtsam::KeyVector& continuousFrontals,
|
||||
const gtsam::KeyVector& continuousParents,
|
||||
const gtsam::DiscreteKeys& discreteParents,
|
||||
const std::vector<gtsam::GaussianConditional::shared_ptr>& conditionals);
|
||||
|
||||
gtsam::HybridGaussianFactor* likelihood(
|
||||
const gtsam::VectorValues& frontals) const;
|
||||
|
|
@ -248,7 +252,7 @@ class HybridNonlinearFactor : gtsam::HybridFactor {
|
|||
bool normalized = false);
|
||||
|
||||
HybridNonlinearFactor(
|
||||
const gtsam::KeyVector& keys, const gtsam::DiscreteKeys& discreteKeys,
|
||||
const gtsam::KeyVector& keys, const gtsam::DiscreteKey& discreteKey,
|
||||
const std::vector<std::pair<gtsam::NonlinearFactor*, double>>& factors,
|
||||
bool normalized = false);
|
||||
|
||||
|
|
|
|||
|
|
@ -20,7 +20,7 @@ import gtsam
|
|||
from gtsam import (DiscreteConditional, DiscreteKeys, GaussianConditional,
|
||||
HybridBayesNet, HybridGaussianConditional,
|
||||
HybridGaussianFactor, HybridGaussianFactorGraph,
|
||||
HybridValues, JacobianFactor, Ordering, noiseModel)
|
||||
HybridValues, JacobianFactor, noiseModel)
|
||||
|
||||
DEBUG_MARGINALS = False
|
||||
|
||||
|
|
@ -31,13 +31,11 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
def test_create(self):
|
||||
"""Test construction of hybrid factor graph."""
|
||||
model = noiseModel.Unit.Create(3)
|
||||
dk = DiscreteKeys()
|
||||
dk.push_back((C(0), 2))
|
||||
|
||||
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
|
||||
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
|
||||
|
||||
gmf = HybridGaussianFactor([X(0)], dk, [(jf1, 0), (jf2, 0)])
|
||||
gmf = HybridGaussianFactor([X(0)], (C(0), 2), [(jf1, 0), (jf2, 0)])
|
||||
|
||||
hfg = HybridGaussianFactorGraph()
|
||||
hfg.push_back(jf1)
|
||||
|
|
@ -58,13 +56,11 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
def test_optimize(self):
|
||||
"""Test construction of hybrid factor graph."""
|
||||
model = noiseModel.Unit.Create(3)
|
||||
dk = DiscreteKeys()
|
||||
dk.push_back((C(0), 2))
|
||||
|
||||
jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
|
||||
jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
|
||||
|
||||
gmf = HybridGaussianFactor([X(0)], dk, [(jf1, 0), (jf2, 0)])
|
||||
gmf = HybridGaussianFactor([X(0)], (C(0), 2), [(jf1, 0), (jf2, 0)])
|
||||
|
||||
hfg = HybridGaussianFactorGraph()
|
||||
hfg.push_back(jf1)
|
||||
|
|
@ -96,8 +92,6 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
|
||||
# Create Gaussian mixture Z(0) = X(0) + noise for each measurement.
|
||||
I_1x1 = np.eye(1)
|
||||
keys = DiscreteKeys()
|
||||
keys.push_back(mode)
|
||||
for i in range(num_measurements):
|
||||
conditional0 = GaussianConditional.FromMeanAndStddev(Z(i),
|
||||
I_1x1,
|
||||
|
|
@ -107,8 +101,10 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
I_1x1,
|
||||
X(0), [0],
|
||||
sigma=3)
|
||||
discreteParents = DiscreteKeys()
|
||||
discreteParents.push_back(mode)
|
||||
bayesNet.push_back(
|
||||
HybridGaussianConditional([Z(i)], [X(0)], keys,
|
||||
HybridGaussianConditional([Z(i)], [X(0)], discreteParents,
|
||||
[conditional0, conditional1]))
|
||||
|
||||
# Create prior on X(0).
|
||||
|
|
|
|||
|
|
@ -27,8 +27,6 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
|
||||
def test_nonlinear_hybrid(self):
|
||||
nlfg = gtsam.HybridNonlinearFactorGraph()
|
||||
dk = gtsam.DiscreteKeys()
|
||||
dk.push_back((10, 2))
|
||||
nlfg.push_back(
|
||||
BetweenFactorPoint3(1, 2, Point3(1, 2, 3),
|
||||
noiseModel.Diagonal.Variances([1, 1, 1])))
|
||||
|
|
@ -40,7 +38,7 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
noiseModel.Unit.Create(3)), 0.0),
|
||||
(PriorFactorPoint3(1, Point3(1, 2, 1),
|
||||
noiseModel.Unit.Create(3)), 0.0)]
|
||||
nlfg.push_back(gtsam.HybridNonlinearFactor([1], dk, factors))
|
||||
nlfg.push_back(gtsam.HybridNonlinearFactor([1], (10, 2), factors))
|
||||
nlfg.push_back(gtsam.DecisionTreeFactor((10, 2), "1 3"))
|
||||
values = gtsam.Values()
|
||||
values.insert_point3(1, Point3(0, 0, 0))
|
||||
|
|
|
|||
Loading…
Reference in New Issue