HybridSmoother based on BayesNet

release/4.3a0
Varun Agrawal 2022-10-20 16:47:45 -04:00
parent 949958dc6e
commit cc78a14a46
2 changed files with 187 additions and 0 deletions

View File

@ -0,0 +1,114 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridSmoother.cpp
* @brief An incremental smoother for hybrid factor graphs
* @author Varun Agrawal
* @date October 2022
*/
#include <gtsam/hybrid/HybridSmoother.h>
#include <algorithm>
#include <unordered_set>
namespace gtsam {
/* ************************************************************************* */
void HybridSmoother::update(HybridGaussianFactorGraph graph,
const Ordering &ordering,
boost::optional<size_t> maxNrLeaves) {
// Add the necessary conditionals from the previous timestep(s).
std::tie(graph, hybridBayesNet_) =
addConditionals(graph, hybridBayesNet_, ordering);
// Eliminate.
auto bayesNetFragment = graph.eliminateSequential(ordering);
/// Prune
if (maxNrLeaves) {
// `pruneBayesNet` sets the leaves with 0 in discreteFactor to nullptr in
// all the conditionals with the same keys in bayesNetFragment.
HybridBayesNet prunedBayesNetFragment =
bayesNetFragment->prune(*maxNrLeaves);
// Set the bayes net fragment to the pruned version
bayesNetFragment =
boost::make_shared<HybridBayesNet>(prunedBayesNetFragment);
}
// Add the partial bayes net to the posterior bayes net.
hybridBayesNet_.push_back<HybridBayesNet>(*bayesNetFragment);
tictoc_print_();
}
/* ************************************************************************* */
std::pair<HybridGaussianFactorGraph, HybridBayesNet>
HybridSmoother::addConditionals(const HybridGaussianFactorGraph &originalGraph,
const HybridBayesNet &originalHybridBayesNet,
const Ordering &ordering) const {
HybridGaussianFactorGraph graph(originalGraph);
HybridBayesNet hybridBayesNet(originalHybridBayesNet);
// If we are not at the first iteration, means we have conditionals to add.
if (!hybridBayesNet.empty()) {
// We add all relevant conditional mixtures on the last continuous variable
// in the previous `hybridBayesNet` to the graph
// Conditionals to remove from the bayes net
// since the conditional will be updated.
std::vector<HybridConditional::shared_ptr> conditionals_to_erase;
// New conditionals to add to the graph
gtsam::HybridBayesNet newConditionals;
// NOTE(Varun) Using a for-range loop doesn't work since some of the
// conditionals are invalid pointers
for (size_t i = 0; i < hybridBayesNet.size(); i++) {
auto conditional = hybridBayesNet.at(i);
for (auto &key : conditional->frontals()) {
if (std::find(ordering.begin(), ordering.end(), key) !=
ordering.end()) {
newConditionals.push_back(conditional);
conditionals_to_erase.push_back(conditional);
break;
}
}
}
// Remove conditionals at the end so we don't affect the order in the
// original bayes net.
for (auto &&conditional : conditionals_to_erase) {
auto it = find(hybridBayesNet.begin(), hybridBayesNet.end(), conditional);
hybridBayesNet.erase(it);
}
graph.push_back(newConditionals);
// newConditionals.print("\n\n\nNew Conditionals to add back");
}
return {graph, hybridBayesNet};
}
/* ************************************************************************* */
GaussianMixture::shared_ptr HybridSmoother::gaussianMixture(
size_t index) const {
return boost::dynamic_pointer_cast<GaussianMixture>(
hybridBayesNet_.at(index));
}
/* ************************************************************************* */
const HybridBayesNet &HybridSmoother::hybridBayesNet() const {
return hybridBayesNet_;
}
} // namespace gtsam

View File

@ -0,0 +1,73 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridSmoother.h
* @brief An incremental smoother for hybrid factor graphs
* @author Varun Agrawal
* @date October 2022
*/
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
namespace gtsam {
class HybridSmoother {
private:
HybridBayesNet hybridBayesNet_;
HybridGaussianFactorGraph remainingFactorGraph_;
public:
/**
* Given new factors, perform an incremental update.
* The relevant densities in the `hybridBayesNet` will be added to the input
* graph (fragment), and then eliminated according to the `ordering`
* presented. The remaining factor graph contains Gaussian mixture factors
* that are not connected to the variables in the ordering, or a single
* discrete factor on all discrete keys, plus all discrete factors in the
* original graph.
*
* \note If maxComponents is given, we look at the discrete factor resulting
* from this elimination, and prune it and the Gaussian components
* corresponding to the pruned choices.
*
* @param graph The new factors, should be linear only
* @param ordering The ordering for elimination, only continuous vars are
* allowed
* @param maxNrLeaves The maximum number of leaves in the new discrete factor,
* if applicable
*/
void update(HybridGaussianFactorGraph graph, const Ordering& ordering,
boost::optional<size_t> maxNrLeaves = boost::none);
/**
* @brief Add conditionals from previous timestep as part of liquefication.
*
* @param graph The new factor graph for the current time step.
* @param hybridBayesNet The hybrid bayes net containing all conditionals so
* far.
* @param ordering The elimination ordering.
* @return std::pair<HybridGaussianFactorGraph, HybridBayesNet>
*/
std::pair<HybridGaussianFactorGraph, HybridBayesNet> addConditionals(
const HybridGaussianFactorGraph& graph,
const HybridBayesNet& hybridBayesNet, const Ordering& ordering) const;
/// Get the Gaussian Mixture from the Bayes Net posterior at `index`.
GaussianMixture::shared_ptr gaussianMixture(size_t index) const;
/// Return the Bayes Net posterior.
const HybridBayesNet& hybridBayesNet() const;
};
}; // namespace gtsam