LinearContainerFactor now includes ability to "relinearize" when supplied with an original linearization point

release/4.3a0
Alex Cunningham 2012-11-21 19:02:13 +00:00
parent 69ea8c8b77
commit cba120c96d
3 changed files with 213 additions and 50 deletions

View File

@ -140,7 +140,7 @@ double LinearContainerFactor::error(const Values& c) const {
if (!linearizationPoint_) if (!linearizationPoint_)
return 0; return 0;
// Extract subset of values for comparision // Extract subset of values for comparison
Values csub; Values csub;
BOOST_FOREACH(const gtsam::Key& key, keys()) BOOST_FOREACH(const gtsam::Key& key, keys())
csub.insert(key, c.at(key)); csub.insert(key, c.at(key));
@ -185,7 +185,39 @@ GaussianFactor::shared_ptr LinearContainerFactor::order(const Ordering& ordering
/* ************************************************************************* */ /* ************************************************************************* */
GaussianFactor::shared_ptr LinearContainerFactor::linearize( GaussianFactor::shared_ptr LinearContainerFactor::linearize(
const Values& c, const Ordering& ordering) const { const Values& c, const Ordering& ordering) const {
if (!hasLinearizationPoint())
return order(ordering); return order(ordering);
// Extract subset of values
Values subsetC;
BOOST_FOREACH(const gtsam::Key& key, this->keys())
subsetC.insert(key, c.at(key));
// Create a temp ordering for this factor
Ordering localOrdering = *subsetC.orderingArbitrary();
// Determine delta between linearization points using new ordering
VectorValues delta = linearizationPoint_->localCoordinates(subsetC, localOrdering);
// clone and reorder linear factor to final ordering
GaussianFactor::shared_ptr linFactor = order(localOrdering);
if (isJacobian()) {
JacobianFactor::shared_ptr jacFactor = boost::shared_dynamic_cast<JacobianFactor>(linFactor);
jacFactor->getb() += jacFactor->unweighted_error(delta) + jacFactor->getb();
} else {
HessianFactor::shared_ptr hesFactor = boost::shared_dynamic_cast<HessianFactor>(linFactor);
size_t dim = hesFactor->linearTerm().size();
Eigen::Block<HessianFactor::Block> Gview = hesFactor->info().block(0, 0, dim, dim);
Vector G_delta = Gview.selfadjointView<Eigen::Upper>() * delta.vector();
hesFactor->constantTerm() += delta.vector().dot(G_delta) + delta.vector().dot(hesFactor->linearTerm());
hesFactor->linearTerm() += G_delta;
}
// reset ordering
Ordering::InvertedMap invLocalOrdering = localOrdering.invert();
BOOST_FOREACH(Index& idx, linFactor->keys())
idx = ordering[invLocalOrdering[idx] ];
return linFactor;
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -193,6 +225,11 @@ bool LinearContainerFactor::isJacobian() const {
return boost::shared_dynamic_cast<JacobianFactor>(factor_); return boost::shared_dynamic_cast<JacobianFactor>(factor_);
} }
/* ************************************************************************* */
bool LinearContainerFactor::isHessian() const {
return boost::shared_dynamic_cast<HessianFactor>(factor_);
}
/* ************************************************************************* */ /* ************************************************************************* */
JacobianFactor::shared_ptr LinearContainerFactor::toJacobian() const { JacobianFactor::shared_ptr LinearContainerFactor::toJacobian() const {
return boost::shared_dynamic_cast<JacobianFactor>(factor_); return boost::shared_dynamic_cast<JacobianFactor>(factor_);

View File

@ -114,10 +114,13 @@ public:
// casting syntactic sugar // casting syntactic sugar
inline bool hasLinearizationPoint() const { return linearizationPoint_; }
/** /**
* Simple check whether this is a Jacobian or Hessian factor * Simple checks whether this is a Jacobian or Hessian factor
*/ */
bool isJacobian() const; bool isJacobian() const;
bool isHessian() const;
/** Casts to JacobianFactor */ /** Casts to JacobianFactor */
JacobianFactor::shared_ptr toJacobian() const; JacobianFactor::shared_ptr toJacobian() const;

View File

@ -7,11 +7,15 @@
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/vector.hpp>
#include <gtsam_unstable/nonlinear/LinearContainerFactor.h> #include <gtsam_unstable/nonlinear/LinearContainerFactor.h>
#include <gtsam/base/TestableAssertions.h> #include <gtsam/base/TestableAssertions.h>
#include <gtsam/geometry/Pose2.h> #include <gtsam/geometry/Pose2.h>
using namespace std;
using namespace boost::assign;
using namespace gtsam; using namespace gtsam;
const gtsam::noiseModel::Diagonal::shared_ptr diag_model2 = noiseModel::Diagonal::Sigmas(Vector_(2, 1.0, 1.0)); const gtsam::noiseModel::Diagonal::shared_ptr diag_model2 = noiseModel::Diagonal::Sigmas(Vector_(2, 1.0, 1.0));
@ -27,20 +31,26 @@ TEST( testLinearContainerFactor, generic_jacobian_factor ) {
Ordering initOrdering; initOrdering += x1, x2, l1, l2; Ordering initOrdering; initOrdering += x1, x2, l1, l2;
JacobianFactor expLinFactor1( Matrix A1 = Matrix_(2,2,
initOrdering[l1],
Matrix_(2,2,
2.74222, -0.0067457, 2.74222, -0.0067457,
0.0, 2.63624), 0.0, 2.63624);
initOrdering[l2], Matrix A2 = Matrix_(2,2,
Matrix_(2,2,
-0.0455167, -0.0443573, -0.0455167, -0.0443573,
-0.0222154, -0.102489), -0.0222154, -0.102489);
Vector_(2, 0.0277052, Vector b = Vector_(2, 0.0277052,
-0.0533393), -0.0533393);
diag_model2);
JacobianFactor expLinFactor(initOrdering[l1], A1, initOrdering[l2], A2, b, diag_model2);
LinearContainerFactor actFactor(expLinFactor, initOrdering);
EXPECT_LONGS_EQUAL(2, actFactor.size());
EXPECT(actFactor.isJacobian());
EXPECT(!actFactor.isHessian());
// check keys
std::vector<gtsam::Key> expKeys; expKeys += l1, l2;
EXPECT(assert_container_equality(expKeys, actFactor.keys()));
LinearContainerFactor actFactor1(expLinFactor1, initOrdering);
Values values; Values values;
values.insert(l1, landmark1); values.insert(l1, landmark1);
values.insert(l2, landmark2); values.insert(l2, landmark2);
@ -48,26 +58,13 @@ TEST( testLinearContainerFactor, generic_jacobian_factor ) {
values.insert(x2, poseA2); values.insert(x2, poseA2);
// Check reconstruction from same ordering // Check reconstruction from same ordering
GaussianFactor::shared_ptr actLinearizationA = actFactor1.linearize(values, initOrdering); GaussianFactor::shared_ptr actLinearizationA = actFactor.linearize(values, initOrdering);
EXPECT(assert_equal(*expLinFactor1.clone(), *actLinearizationA, tol)); EXPECT(assert_equal(*expLinFactor.clone(), *actLinearizationA, tol));
// Check reconstruction from new ordering // Check reconstruction from new ordering
Ordering newOrdering; newOrdering += x1, l1, x2, l2; Ordering newOrdering; newOrdering += x1, l1, x2, l2;
GaussianFactor::shared_ptr actLinearizationB = actFactor1.linearize(values, newOrdering); GaussianFactor::shared_ptr actLinearizationB = actFactor.linearize(values, newOrdering);
JacobianFactor expLinFactor2(newOrdering[l1], A1, newOrdering[l2], A2, b, diag_model2);
JacobianFactor expLinFactor2(
newOrdering[l1],
Matrix_(2,2,
2.74222, -0.0067457,
0.0, 2.63624),
newOrdering[l2],
Matrix_(2,2,
-0.0455167, -0.0443573,
-0.0222154, -0.102489),
Vector_(2, 0.0277052,
-0.0533393),
diag_model2);
EXPECT(assert_equal(*expLinFactor2.clone(), *actLinearizationB, tol)); EXPECT(assert_equal(*expLinFactor2.clone(), *actLinearizationB, tol));
} }
@ -76,18 +73,16 @@ TEST( testLinearContainerFactor, jacobian_factor_withlinpoints ) {
Ordering ordering; ordering += x1, x2, l1, l2; Ordering ordering; ordering += x1, x2, l1, l2;
JacobianFactor expLinFactor( Matrix A1 = Matrix_(2,2,
ordering[l1],
Matrix_(2,2,
2.74222, -0.0067457, 2.74222, -0.0067457,
0.0, 2.63624), 0.0, 2.63624);
ordering[l2], Matrix A2 = Matrix_(2,2,
Matrix_(2,2,
-0.0455167, -0.0443573, -0.0455167, -0.0443573,
-0.0222154, -0.102489), -0.0222154, -0.102489);
Vector_(2, 0.0277052, Vector b = Vector_(2, 0.0277052,
-0.0533393), -0.0533393);
diag_model2);
JacobianFactor expLinFactor(ordering[l1], A1, ordering[l2], A2, b, diag_model2);
Values values; Values values;
values.insert(l1, landmark1); values.insert(l1, landmark1);
@ -107,16 +102,27 @@ TEST( testLinearContainerFactor, jacobian_factor_withlinpoints ) {
expLinPoint.insert(l1, landmark1); expLinPoint.insert(l1, landmark1);
expLinPoint.insert(l2, landmark2); expLinPoint.insert(l2, landmark2);
CHECK(actFactor.linearizationPoint()); CHECK(actFactor.linearizationPoint());
EXPECT(actFactor.hasLinearizationPoint());
EXPECT(assert_equal(expLinPoint, *actFactor.linearizationPoint())); EXPECT(assert_equal(expLinPoint, *actFactor.linearizationPoint()));
// Check error evaluation // Check error evaluation
Vector delta_l1 = Vector_(2, 1.0, 2.0);
Vector delta_l2 = Vector_(2, 3.0, 4.0);
VectorValues delta = values.zeroVectors(ordering); VectorValues delta = values.zeroVectors(ordering);
delta.at(ordering[l1]) = Vector_(2, 1.0, 2.0); delta.at(ordering[l1]) = delta_l1;
delta.at(ordering[l2]) = Vector_(2, 3.0, 4.0); delta.at(ordering[l2]) = delta_l2;
Values noisyValues = values.retract(delta, ordering); Values noisyValues = values.retract(delta, ordering);
double expError = expLinFactor.error(delta); double expError = expLinFactor.error(delta);
EXPECT_DOUBLES_EQUAL(expError, actFactor.error(noisyValues), tol); EXPECT_DOUBLES_EQUAL(expError, actFactor.error(noisyValues), tol);
EXPECT_DOUBLES_EQUAL(expLinFactor.error(values.zeroVectors(ordering)), actFactor.error(values), tol); EXPECT_DOUBLES_EQUAL(expLinFactor.error(values.zeroVectors(ordering)), actFactor.error(values), tol);
// Check linearization with corrections for updated linearization point
Ordering newOrdering; newOrdering += x1, l1, x2, l2;
GaussianFactor::shared_ptr actLinearizationB = actFactor.linearize(noisyValues, newOrdering);
Vector bprime = b + A1 * delta_l1 + A2 * delta_l2;
JacobianFactor expLinFactor2(newOrdering[l1], A1, newOrdering[l2], A2, bprime, diag_model2);
EXPECT(assert_equal(*expLinFactor2.clone(), *actLinearizationB, tol));
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -125,10 +131,14 @@ TEST( testLinearContainerFactor, generic_hessian_factor ) {
Matrix G12 = Matrix_(1,2, 2.0, 4.0); Matrix G12 = Matrix_(1,2, 2.0, 4.0);
Matrix G13 = Matrix_(1,3, 3.0, 6.0, 9.0); Matrix G13 = Matrix_(1,3, 3.0, 6.0, 9.0);
Matrix G22 = Matrix_(2,2, 3.0, 5.0, 0.0, 6.0); Matrix G22 = Matrix_(2,2, 3.0, 5.0,
Matrix G23 = Matrix_(2,3, 4.0, 6.0, 8.0, 1.0, 2.0, 4.0); 0.0, 6.0);
Matrix G23 = Matrix_(2,3, 4.0, 6.0, 8.0,
1.0, 2.0, 4.0);
Matrix G33 = Matrix_(3,3, 1.0, 2.0, 3.0, 0.0, 5.0, 6.0, 0.0, 0.0, 9.0); Matrix G33 = Matrix_(3,3, 1.0, 2.0, 3.0,
0.0, 5.0, 6.0,
0.0, 0.0, 9.0);
Vector g1 = Vector_(1, -7.0); Vector g1 = Vector_(1, -7.0);
Vector g2 = Vector_(2, -8.0, -9.0); Vector g2 = Vector_(2, -8.0, -9.0);
@ -147,6 +157,9 @@ TEST( testLinearContainerFactor, generic_hessian_factor ) {
values.insert(x2, poseA2); values.insert(x2, poseA2);
LinearContainerFactor actFactor(initFactor, initOrdering); LinearContainerFactor actFactor(initFactor, initOrdering);
EXPECT(!actFactor.isJacobian());
EXPECT(actFactor.isHessian());
GaussianFactor::shared_ptr actLinearization1 = actFactor.linearize(values, initOrdering); GaussianFactor::shared_ptr actLinearization1 = actFactor.linearize(values, initOrdering);
EXPECT(assert_equal(*initFactor.clone(), *actLinearization1, tol)); EXPECT(assert_equal(*initFactor.clone(), *actLinearization1, tol));
@ -157,6 +170,116 @@ TEST( testLinearContainerFactor, generic_hessian_factor ) {
EXPECT(assert_equal(*expLinFactor.clone(), *actLinearization2, tol)); EXPECT(assert_equal(*expLinFactor.clone(), *actLinearization2, tol));
} }
/* ************************************************************************* */
TEST( testLinearContainerFactor, hessian_factor_withlinpoints ) {
// 2 variable example, one pose, one landmark (planar)
// Initial ordering: x1, l1
Matrix G11 = Matrix_(3,3,
1.0, 2.0, 3.0,
0.0, 5.0, 6.0,
0.0, 0.0, 9.0);
Matrix G12 = Matrix_(3,2,
1.0, 2.0,
3.0, 5.0,
4.0, 6.0);
Vector g1 = Vector_(3, 1.0, 2.0, 3.0);
Matrix G22 = Matrix_(2,2,
0.5, 0.2,
0.0, 0.6);
Vector g2 = Vector_(2, -8.0, -9.0);
double f = 10.0;
// Construct full matrices
Matrix G(5,5);
G << G11, G12, Matrix::Zero(2,3), G22;
Ordering ordering; ordering += x1, x2, l1;
HessianFactor initFactor(ordering[x1], ordering[l1], G11, G12, g1, G22, g2, f);
Values linearizationPoint, expLinPoints;
linearizationPoint.insert(l1, landmark1);
linearizationPoint.insert(x1, poseA1);
expLinPoints = linearizationPoint;
linearizationPoint.insert(x2, poseA2);
LinearContainerFactor actFactor(initFactor, ordering, linearizationPoint);
EXPECT(!actFactor.isJacobian());
EXPECT(actFactor.isHessian());
EXPECT(actFactor.hasLinearizationPoint());
Values actLinPoint = *actFactor.linearizationPoint();
EXPECT(assert_equal(expLinPoints, actLinPoint));
// Create delta
Vector delta_l1 = Vector_(2, 1.0, 2.0);
Vector delta_x1 = Vector_(3, 3.0, 4.0, 0.5);
Vector delta_x2 = Vector_(3, 6.0, 7.0, 0.3);
// Check error calculation
VectorValues delta = linearizationPoint.zeroVectors(ordering);
delta.at(ordering[l1]) = delta_l1;
delta.at(ordering[x1]) = delta_x1;
delta.at(ordering[x2]) = delta_x2;
EXPECT(assert_equal(Vector_(5, 3.0, 4.0, 0.5, 1.0, 2.0), delta.vector(initFactor.keys())));
Values noisyValues = linearizationPoint.retract(delta, ordering);
double expError = initFactor.error(delta);
EXPECT_DOUBLES_EQUAL(expError, actFactor.error(noisyValues), tol);
EXPECT_DOUBLES_EQUAL(initFactor.error(linearizationPoint.zeroVectors(ordering)), actFactor.error(linearizationPoint), tol);
// Compute updated versions
Vector dv = Vector_(5, 3.0, 4.0, 0.5, 1.0, 2.0);
Vector g(5); g << g1, g2;
Vector g_prime = G.selfadjointView<Eigen::Upper>() * dv + g;
// Check linearization with corrections for updated linearization point
Vector g1_prime = g_prime.head(3);
Vector g2_prime = g_prime.tail(2);
double f_prime = f + dv.transpose() * G.selfadjointView<Eigen::Upper>() * dv + dv.transpose() * g;
HessianFactor expNewFactor(ordering[x1], ordering[l1], G11, G12, g1_prime, G22, g2_prime, f_prime);
EXPECT(assert_equal(*expNewFactor.clone(), *actFactor.linearize(noisyValues, ordering), tol));
}
/* ************************************************************************* */
TEST( testLinearContainerFactor, creation ) {
// Create a set of local keys (No robot label)
Key l1 = 11, l2 = 12,
l3 = 13, l4 = 14,
l5 = 15, l6 = 16,
l7 = 17, l8 = 18;
// creating an ordering to decode the linearized factor
Ordering ordering;
ordering += l1,l2,l3,l4,l5,l6,l7,l8;
// create a linear factor
SharedDiagonal model = noiseModel::Unit::Create(2);
JacobianFactor::shared_ptr linear_factor(new JacobianFactor(
ordering[l3], eye(2,2), ordering[l5], 2.0 * eye(2,2), zero(2), model));
// create a set of values - build with full set of values
gtsam::Values full_values, exp_values;
full_values.insert(l3, Point2(1.0, 2.0));
full_values.insert(l5, Point2(4.0, 3.0));
exp_values = full_values;
full_values.insert(l1, Point2(3.0, 7.0));
LinearContainerFactor actual(linear_factor, ordering, full_values);
// Verify the keys
std::vector<gtsam::Key> expKeys;
expKeys += l3, l5;
EXPECT(assert_container_equality(expKeys, actual.keys()));
// Verify subset of linearization points
EXPECT(assert_equal(exp_values, actual.linearizationPoint(), tol));
}
/* ************************************************************************* */ /* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); } int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */ /* ************************************************************************* */