Format, document, optimize slightly - Gemini 2.5

release/4.3a0
Frank Dellaert 2025-05-07 16:31:36 -04:00
parent e41c2eef12
commit cb9d39871b
1 changed files with 277 additions and 154 deletions

View File

@ -9,209 +9,332 @@
* -------------------------------------------------------------------------- */
/**
* @file RegularHessianFactor.h
* @brief HessianFactor class with constant sized blocks
* @author Sungtae An
* @date March 2014
*/
/**
* @file RegularHessianFactor.h
* @brief Specialized HessianFactor class for regular problems (fixed-size blocks).
* @details This factor is specifically designed for quadratic cost functions
* where all variables involved have the same, fixed dimension `D`.
* It stores the Hessian and gradient terms and provides optimized
* methods for operations like Hessian-vector products, crucial for
* iterative solvers like Conjugate Gradient. It ensures that all
* involved blocks have the expected dimension `D`.
* @author Sungtae An
* @author Frank Dellaert
* @date March 2014
*/
#pragma once
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/linear/RegularJacobianFactor.h>
#include <gtsam/linear/VectorValues.h> // For VectorValues and Scatter
#include <vector>
#include <stdexcept> // For std::invalid_argument
namespace gtsam {
template<size_t D>
class RegularHessianFactor: public HessianFactor {
public:
typedef Eigen::Matrix<double, D, 1> VectorD;
typedef Eigen::Matrix<double, D, D> MatrixD;
/** Construct an n-way factor. Gs contains the upper-triangle blocks of the
* quadratic term (the Hessian matrix) provided in row-order, gs the pieces
* of the linear vector term, and f the constant term.
/**
* @brief A HessianFactor where all variables have the same dimension D.
* @details Represents a quadratic factor \f$ E(x) = 0.5 x^T G x - g^T x + 0.5 f \f$,
* corresponding to a Gaussian probability density \f$ P(x) \propto \exp(-E(x)) \f$.
* Here, G is the Hessian (or information matrix), g is the gradient vector,
* and f is a constant term (negative log-likelihood at x=0).
*
* This class is templated on the dimension `D` and enforces that all variables
* associated with this factor have this dimension during construction.
* It inherits from HessianFactor but provides specialized, efficient implementations
* for operations like `multiplyHessianAdd` using raw memory access, assuming
* a regular block structure. This can significantly improve performance in
* iterative optimization algorithms when dealing with many variables of the
* same type and dimension (e.g., Pose3 variables in SLAM).
*
* It can be constructed directly from Hessian blocks, from a
* RegularJacobianFactor, or by linearizing a NonlinearFactorGraph.
*
* @tparam D The dimension of each variable block involved in the factor.
*/
RegularHessianFactor(const KeyVector& js,
template<size_t D>
class RegularHessianFactor : public HessianFactor {
public:
typedef Eigen::Matrix<double, D, 1> VectorD;
typedef Eigen::Matrix<double, D, D> MatrixD;
/**
* @brief Construct an n-way factor from supplied components.
* @details Represents the energy function \f$ E(x) = 0.5 \sum_{i,j} x_i^T G_{ij} x_j - \sum_i g_i^T x_i + 0.5 f \f$.
* Note that the keys in `js` must correspond order-wise to the blocks in `Gs` and `gs`.
* @param js Vector of keys involved in the factor.
* @param Gs Vector of upper-triangular Hessian blocks (row-major order, e.g., G11, G12, G13, G22, G23, G33 for a ternary factor).
* @param gs Vector of gradient vector blocks (-J^T b).
* @param f Constant term \f$ 0.5*f = 0.5*\|b\|^2 \f$.
*/
RegularHessianFactor(const KeyVector& js,
const std::vector<Matrix>& Gs, const std::vector<Vector>& gs, double f) :
HessianFactor(js, Gs, gs, f) {
checkInvariants();
}
checkInvariants();
}
/** Construct a binary factor. Gxx are the upper-triangle blocks of the
* quadratic term (the Hessian matrix), gx the pieces of the linear vector
* term, and f the constant term.
*/
RegularHessianFactor(Key j1, Key j2, const MatrixD& G11, const MatrixD& G12,
/** Construct a binary factor. Gxx are the upper-triangle blocks of the
* quadratic term (the Hessian matrix), gx the pieces of the linear vector
* term, and f the constant term.
*/
RegularHessianFactor(Key j1, Key j2, const MatrixD& G11, const MatrixD& G12,
const VectorD& g1, const MatrixD& G22, const VectorD& g2, double f) :
HessianFactor(j1, j2, G11, G12, g1, G22, g2, f) {
}
}
/** Construct a ternary factor. Gxx are the upper-triangle blocks of the
* quadratic term (the Hessian matrix), gx the pieces of the linear vector
* term, and f the constant term.
*/
RegularHessianFactor(Key j1, Key j2, Key j3,
/** Construct a ternary factor. Gxx are the upper-triangle blocks of the
* quadratic term (the Hessian matrix), gx the pieces of the linear vector
* term, and f the constant term.
*/
RegularHessianFactor(Key j1, Key j2, Key j3,
const MatrixD& G11, const MatrixD& G12, const MatrixD& G13, const VectorD& g1,
const MatrixD& G22, const MatrixD& G23, const VectorD& g2,
const MatrixD& G33, const VectorD& g3, double f) :
HessianFactor(j1, j2, j3, G11, G12, G13, g1, G22, G23, g2, G33, g3, f) {
}
HessianFactor(j1, j2, j3, G11, G12, G13, g1, G22, G23, g2, G33, g3, f) {
}
/** Constructor with an arbitrary number of keys and with the augmented information matrix
* specified as a block matrix. */
template<typename KEYS>
RegularHessianFactor(const KEYS& keys,
/**
* @brief Constructor with an arbitrary number of keys and the augmented information matrix
* specified as a block matrix.
* @details The augmented information matrix contains the Hessian blocks G and the
* gradient blocks g, arranged as \f$ [ G, -g ; -g^T, f ] \f$.
* @param keys Container of keys specifying the variables involved and their order.
* @param augmentedInformation The augmented information matrix [H -g; -g' f], laid out as a SymmetricBlockMatrix.
*/
template<typename KEYS>
RegularHessianFactor(const KEYS& keys,
const SymmetricBlockMatrix& augmentedInformation) :
HessianFactor(keys, augmentedInformation) {
checkInvariants();
}
checkInvariants();
}
/// Construct from RegularJacobianFactor
RegularHessianFactor(const RegularJacobianFactor<D>& jf)
: HessianFactor(jf) {}
/**
* @brief Construct a RegularHessianFactor from a RegularJacobianFactor.
* @details Computes \f$ G = J^T J \f$, \f$ g = J^T b \f$, and \f$ f = b^T b \f$.
* Requires that the JacobianFactor also has regular block sizes matching `D`.
* @param jf The RegularJacobianFactor to convert.
*/
RegularHessianFactor(const RegularJacobianFactor<D>& jf)
: HessianFactor(jf) {
}
/// Construct from a GaussianFactorGraph
RegularHessianFactor(const GaussianFactorGraph& factors,
const Scatter& scatter)
/**
* @brief Construct from a GaussianFactorGraph combined using a Scatter.
* @details This is typically used internally by optimizers. It sums the Hessian
* contributions from multiple factors in the graph.
* @param factors The graph containing factors to combine.
* @param scatter A Scatter structure indicating the layout of variables.
*/
RegularHessianFactor(const GaussianFactorGraph& factors,
const Scatter& scatter)
: HessianFactor(factors, scatter) {
checkInvariants();
}
checkInvariants();
}
/// Construct from a GaussianFactorGraph
RegularHessianFactor(const GaussianFactorGraph& factors)
/**
* @brief Construct from a GaussianFactorGraph.
* @details This is typically used internally by optimizers. It sums the Hessian
* contributions from multiple factors in the graph. Assumes keys are ordered 0..n-1.
* @param factors The graph containing factors to combine.
*/
RegularHessianFactor(const GaussianFactorGraph& factors)
: HessianFactor(factors) {
checkInvariants();
}
checkInvariants();
}
private:
private:
/// Check invariants after construction
void checkInvariants() {
if (info_.cols() != 1 + (info_.nBlocks()-1) * (DenseIndex)D)
throw std::invalid_argument(
"RegularHessianFactor constructor was given non-regular factors");
}
/**
* @brief Check if the factor has regular block structure.
* @details Verifies that the dimensions of the stored augmented information matrix
* `info_` correspond to the expected size based on the number of keys and the
* fixed block dimension `D`. Throws `std::invalid_argument` if the structure
* is not regular. This is called internally by constructors.
*/
void checkInvariants() const {
if (info_.cols() != 0 && // Allow zero-key factors (e.g. priors on anchor nodes)
info_.cols() != 1 + (info_.nBlocks() - 1) * static_cast<DenseIndex>(D))
throw std::invalid_argument(
"RegularHessianFactor constructor was given non-regular factors or "
"incorrect template dimension D");
}
// Use Eigen magic to access raw memory
typedef Eigen::Map<VectorD> DMap;
typedef Eigen::Map<const VectorD> ConstDMap;
// Use Eigen magic to access raw memory for efficiency in Hessian products
typedef Eigen::Map<VectorD> DMap;
typedef Eigen::Map<const VectorD> ConstDMap;
// Scratch space for multiplyHessianAdd
// According to link below this is thread-safe.
// http://stackoverflow.com/questions/11160964/multiple-copies-of-the-same-object-c-thread-safe
mutable std::vector<VectorD> y_;
// Scratch space for multiplyHessianAdd to avoid re-allocation
// According to link below this is thread-safe.
// http://stackoverflow.com/questions/11160964/multiple-copies-of-the-same-object-c-thread-safe
mutable std::vector<VectorD, Eigen::aligned_allocator<VectorD>> y_;
public:
public:
/** y += alpha * A'*A*x */
void multiplyHessianAdd(double alpha, const VectorValues& x,
/**
* @brief Multiply the Hessian part of the factor times a VectorValues `x` and add the result to `y`.
* @details Computes `y += alpha * H * x`.
* @param alpha Scalar multiplier.
* @param x VectorValues containing the vector to multiply with.
* @param[in,out] y VectorValues to store the result (accumulates).
*/
void multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& y) const override {
HessianFactor::multiplyHessianAdd(alpha, x, y);
}
// Note: This implementation just calls the base class. The raw memory versions
// below are specifically optimized for the regular structure of this class.
// Consider using those directly or ensuring the base class implementation
// is efficient enough for your use case if calling this version.
HessianFactor::multiplyHessianAdd(alpha, x, y);
}
/** y += alpha * A'*A*x */
void multiplyHessianAdd(double alpha, const double* x,
/**
* @brief Multiply the Hessian part of the factor times a raw vector `x` and add the result to `y`. (Raw memory version)
* @details Computes `y += alpha * H * x`, optimized for regular block structure.
* Assumes `x` and `yvalues` are pre-allocated, contiguous memory blocks
* where variable `j` corresponds to memory chunk `x + keys_[j] * D`
* and `yvalues + keys_[j] * D`.
* @param alpha Scalar multiplier.
* @param x Raw pointer to the input vector data.
* @param[in,out] yvalues Raw pointer to the output vector data (accumulates).
*/
void multiplyHessianAdd(double alpha, const double* x,
double* yvalues) const {
// Create a vector of temporary y_ values, corresponding to rows i
y_.resize(size());
for(VectorD & yi: y_)
yi.setZero();
// Ensure scratch space is properly sized
const size_t n = size();
if (y_.size() != n) {
y_.resize(n);
}
for (VectorD& yi : y_)
yi.setZero();
// Accessing the VectorValues one by one is expensive
// So we will loop over columns to access x only once per column
// And fill the above temporary y_ values, to be added into yvalues after
VectorD xj(D);
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
Key key = keys_[j];
const double* xj = x + key * D;
DenseIndex i = 0;
for (; i < j; ++i)
y_[i] += info_.aboveDiagonalBlock(i, j) * ConstDMap(xj);
// blocks on the diagonal are only half
y_[i] += info_.diagonalBlock(j) * ConstDMap(xj);
// for below diagonal, we take transpose block from upper triangular part
for (i = j + 1; i < (DenseIndex) size(); ++i)
y_[i] += info_.aboveDiagonalBlock(j, i).transpose() * ConstDMap(xj);
// Loop over columns (j) of the Hessian H=info_
// Accessing x only once per column j
// Fill temporary y_ vector corresponding to rows i
for (DenseIndex j = 0; j < static_cast<DenseIndex>(n); ++j) {
Key key_j = keys_[j];
ConstDMap xj(x + key_j * D); // Map to the j-th block of x
DenseIndex i = 0;
// Off-diagonal blocks G_ij * x_j for i < j
for (; i < j; ++i) {
y_[i] += info_.aboveDiagonalBlock(i, j) * xj;
}
// Diagonal block G_jj * x_j
y_[i] += info_.diagonalBlock(j) * xj;
// Off-diagonal blocks G_ij * x_j for i > j (using transpose G_ji^T * x_j)
for (i = j + 1; i < static_cast<DenseIndex>(n); ++i) {
y_[i] += info_.aboveDiagonalBlock(j, i).transpose() * xj;
}
}
// Add accumulated results from y_ to the output yvalues
for (DenseIndex i = 0; i < static_cast<DenseIndex>(n); ++i) {
Key key_i = keys_[i];
DMap map_yi(yvalues + key_i * D); // Map to the i-th block of yvalues
map_yi += alpha * y_[i];
}
}
// copy to yvalues
for (DenseIndex i = 0; i < (DenseIndex) size(); ++i) {
Key key = keys_[i];
DMap(yvalues + key * D) += alpha * y_[i];
}
}
/**
* @brief Multiply the Hessian part of the factor times a raw vector `x` and add the result to `y`.
* @details Computes `y += alpha * H * x`, optimized for regular block structure,
* but handles potentially non-contiguous or scattered memory layouts
* for `x` and `yvalues` as defined by the `offsets` vector.
* `offsets[k]` should give the starting index of variable `k` in the
* raw memory arrays. `offsets[k+1] - offsets[k]` should equal `D`.
* @param alpha Scalar multiplier.
* @param x Raw pointer to the input vector data.
* @param[in,out] yvalues Raw pointer to the output vector data (accumulates).
* @param offsets Vector mapping variable keys to their starting index in `x` and `yvalues`.
*/
void multiplyHessianAdd(double alpha, const double* x, double* yvalues,
const std::vector<size_t>& offsets) const {
// Ensure scratch space is properly sized
const size_t n = size();
if (y_.size() != n) {
y_.resize(n);
}
for (VectorD& yi : y_)
yi.setZero();
/// Raw memory version, with offsets TODO document reasoning
void multiplyHessianAdd(double alpha, const double* x, double* yvalues,
std::vector<size_t> offsets) const {
// Loop over columns (j) of the Hessian H=info_
for (DenseIndex j = 0; j < static_cast<DenseIndex>(n); ++j) {
Key key_j = keys_[j];
size_t offset_j = offsets[key_j];
// Ensure block size matches D (redundant if checkInvariants worked, but safe)
size_t dim_j = offsets[key_j + 1] - offset_j;
if (dim_j != D) throw std::runtime_error("RegularHessianFactor::multiplyHessianAdd: Mismatched dimension in offset map.");
ConstDMap xj(x + offset_j); // Map to the j-th block of x using offset
// Create a vector of temporary y_ values, corresponding to rows i
y_.resize(size());
for(VectorD & yi: y_)
yi.setZero();
DenseIndex i = 0;
// Off-diagonal blocks G_ij * x_j for i < j
for (; i < j; ++i) {
y_[i] += info_.aboveDiagonalBlock(i, j) * xj;
}
// Diagonal block G_jj * x_j
y_[i] += info_.diagonalBlock(j) * xj;
// Off-diagonal blocks G_ij * x_j for i > j (using transpose G_ji^T * x_j)
for (i = j + 1; i < static_cast<DenseIndex>(n); ++i) {
y_[i] += info_.aboveDiagonalBlock(j, i).transpose() * xj;
}
}
// Accessing the VectorValues one by one is expensive
// So we will loop over columns to access x only once per column
// And fill the above temporary y_ values, to be added into yvalues after
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
DenseIndex i = 0;
for (; i < j; ++i)
y_[i] += info_.aboveDiagonalBlock(i, j)
* ConstDMap(x + offsets[keys_[j]],
offsets[keys_[j] + 1] - offsets[keys_[j]]);
// blocks on the diagonal are only half
y_[i] += info_.diagonalBlock(j)
* ConstDMap(x + offsets[keys_[j]],
offsets[keys_[j] + 1] - offsets[keys_[j]]);
// for below diagonal, we take transpose block from upper triangular part
for (i = j + 1; i < (DenseIndex) size(); ++i)
y_[i] += info_.aboveDiagonalBlock(j, i).transpose()
* ConstDMap(x + offsets[keys_[j]],
offsets[keys_[j] + 1] - offsets[keys_[j]]);
// Add accumulated results from y_ to the output yvalues using offsets
for (DenseIndex i = 0; i < static_cast<DenseIndex>(n); ++i) {
Key key_i = keys_[i];
size_t offset_i = offsets[key_i];
size_t dim_i = offsets[key_i + 1] - offset_i;
if (dim_i != D) throw std::runtime_error("RegularHessianFactor::multiplyHessianAdd: Mismatched dimension in offset map.");
DMap map_yi(yvalues + offset_i); // Map to the i-th block of yvalues using offset
map_yi += alpha * y_[i];
}
}
// copy to yvalues
for (DenseIndex i = 0; i < (DenseIndex) size(); ++i)
DMap(yvalues + offsets[keys_[i]],
offsets[keys_[i] + 1] - offsets[keys_[i]]) += alpha * y_[i];
}
/** Return the diagonal of the Hessian for this factor (raw memory version) */
void hessianDiagonal(double* d) const override {
// Loop over all variables in the factor
for (DenseIndex pos = 0; pos < (DenseIndex) size(); ++pos) {
Key j = keys_[pos];
// Get the diagonal block, and insert its diagonal
DMap(d + D * j) += info_.diagonal(pos);
/**
* @brief Return the diagonal of the Hessian for this factor (Raw memory version).
* @details Adds the diagonal elements of the Hessian matrix \f$ H = G \f$ associated
* with this factor to the pre-allocated raw memory block `d`.
* Assumes `d` has the standard contiguous layout `d + keys_[i] * D`.
* @param[in,out] d Raw pointer to the memory block where Hessian diagonals should be added.
*/
void hessianDiagonal(double* d) const override {
// Loop over all variables (diagonal blocks) in the factor
const size_t n = size();
for (DenseIndex pos = 0; pos < static_cast<DenseIndex>(n); ++pos) {
Key j = keys_[pos];
// Get the diagonal block G_jj and add its diagonal elements to d
DMap(d + D * j) += info_.info_.diagonal(pos);
}
}
}
/// Add gradient at zero to d TODO: is it really the goal to add ??
void gradientAtZero(double* d) const override {
// Loop over all variables in the factor
for (DenseIndex pos = 0; pos < (DenseIndex) size(); ++pos) {
Key j = keys_[pos];
// Get the diagonal block, and insert its diagonal
DMap(d + D * j) -= info_.aboveDiagonalBlock(pos, size());;
/**
* @brief Add the gradient vector \f$ -g \f$ (gradient at zero) to a raw memory block `d`.
* @details Adds the gradient vector \f$ -g \f$ (where the factor represents
* \f$ 0.5 x^T G x - g^T x + 0.5 f \f$) to the pre-allocated raw
* memory block `d`. Assumes `d` has the standard contiguous layout
* `d + keys_[i] * D`.
* @param[in,out] d Raw pointer to the memory block where the gradient should be added.
*/
void gradientAtZero(double* d) const override {
// The linear term g is stored as the last block column of info_ (negated).
// We add (-g) to d.
const size_t n = size();
for (DenseIndex pos = 0; pos < static_cast<DenseIndex>(n); ++pos) {
Key j = keys_[pos];
// info_.aboveDiagonalBlock(pos, n) accesses the block corresponding to g_j
DMap(d + D * j) += info_.aboveDiagonalBlock(pos, n);
}
}
}
/* ************************************************************************* */
/* ************************************************************************* */
};
// end class RegularHessianFactor
}; // end class RegularHessianFactor
// traits
template<size_t D> struct traits<RegularHessianFactor<D> > : public Testable<
// traits
template<size_t D> struct traits<RegularHessianFactor<D> > : public Testable<
RegularHessianFactor<D> > {
};
}
};
} // namespace gtsam