HybridBayesTree::optimize
parent
f0df82ac04
commit
cb2d2e678d
|
@ -35,4 +35,41 @@ bool HybridBayesTree::equals(const This& other, double tol) const {
|
|||
return Base::equals(other, tol);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
|
||||
GaussianBayesNet gbn;
|
||||
|
||||
KeyVector added_keys;
|
||||
|
||||
// Iterate over all the nodes in the BayesTree
|
||||
for (auto&& node : nodes()) {
|
||||
// Check if conditional being added is already in the Bayes net.
|
||||
if (std::find(added_keys.begin(), added_keys.end(), node.first) ==
|
||||
added_keys.end()) {
|
||||
// Access the clique and get the underlying hybrid conditional
|
||||
HybridBayesTreeClique::shared_ptr clique = node.second;
|
||||
HybridConditional::shared_ptr conditional = clique->conditional();
|
||||
|
||||
KeyVector frontals(conditional->frontals().begin(),
|
||||
conditional->frontals().end());
|
||||
|
||||
// Record the key being added
|
||||
added_keys.insert(added_keys.end(), frontals.begin(), frontals.end());
|
||||
|
||||
// If conditional is hybrid (and not discrete-only), we get the Gaussian
|
||||
// Conditional corresponding to the assignment and add it to the Gaussian
|
||||
// Bayes Net.
|
||||
if (conditional->isHybrid()) {
|
||||
auto gm = conditional->asMixture();
|
||||
GaussianConditional::shared_ptr gaussian_conditional =
|
||||
(*gm)(assignment);
|
||||
|
||||
gbn.push_back(gaussian_conditional);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Return the optimized bayes net.
|
||||
return gbn.optimize();
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -70,6 +70,15 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
|
|||
/** Check equality */
|
||||
bool equals(const This& other, double tol = 1e-9) const;
|
||||
|
||||
/**
|
||||
* @brief Recursively optimize the BayesTree to produce a vector solution.
|
||||
*
|
||||
* @param assignment The discrete values assignment to select the Gaussian
|
||||
* mixtures.
|
||||
* @return VectorValues
|
||||
*/
|
||||
VectorValues optimize(const DiscreteValues& assignment) const;
|
||||
|
||||
/// @}
|
||||
};
|
||||
|
||||
|
|
|
@ -0,0 +1,106 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridBayesTree.cpp
|
||||
* @brief Unit tests for HybridBayesTree
|
||||
* @author Varun Agrawal
|
||||
* @date August 2022
|
||||
*/
|
||||
|
||||
#include <gtsam/hybrid/HybridBayesTree.h>
|
||||
#include <gtsam/hybrid/HybridGaussianISAM.h>
|
||||
|
||||
#include "Switching.h"
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
/* ****************************************************************************/
|
||||
// Test for optimizing a HybridBayesTree.
|
||||
TEST(HybridBayesTree, Optimize) {
|
||||
Switching s(4);
|
||||
|
||||
HybridGaussianISAM isam;
|
||||
HybridGaussianFactorGraph graph1;
|
||||
|
||||
// Add the 3 hybrid factors, x1-x2, x2-x3, x3-x4
|
||||
for (size_t i = 1; i < 4; i++) {
|
||||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
// Add the Gaussian factors, 1 prior on X(1),
|
||||
// 3 measurements on X(2), X(3), X(4)
|
||||
graph1.push_back(s.linearizedFactorGraph.at(0));
|
||||
for (size_t i = 4; i <= 7; i++) {
|
||||
graph1.push_back(s.linearizedFactorGraph.at(i));
|
||||
}
|
||||
|
||||
isam.update(graph1);
|
||||
|
||||
DiscreteValues assignment;
|
||||
assignment[M(1)] = 1;
|
||||
assignment[M(2)] = 1;
|
||||
assignment[M(3)] = 1;
|
||||
|
||||
VectorValues delta = isam.optimize(assignment);
|
||||
|
||||
// The linearization point has the same value as the key index,
|
||||
// e.g. X(1) = 1, X(2) = 2,
|
||||
// but the factors specify X(k) = k-1, so delta should be -1.
|
||||
VectorValues expected_delta;
|
||||
expected_delta.insert(make_pair(X(1), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(2), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(3), -Vector1::Ones()));
|
||||
expected_delta.insert(make_pair(X(4), -Vector1::Ones()));
|
||||
|
||||
EXPECT(assert_equal(expected_delta, delta));
|
||||
|
||||
// Create ordering.
|
||||
Ordering ordering;
|
||||
for (size_t k = 1; k <= s.K; k++) ordering += X(k);
|
||||
|
||||
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||
s.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
|
||||
hybridBayesNet->print();
|
||||
GaussianBayesNet gbn = hybridBayesNet->choose(assignment);
|
||||
|
||||
// EXPECT_LONGS_EQUAL(4, gbn.size());
|
||||
|
||||
// EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
// hybridBayesNet->atGaussian(0)))(assignment),
|
||||
// *gbn.at(0)));
|
||||
// EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
// hybridBayesNet->atGaussian(1)))(assignment),
|
||||
// *gbn.at(1)));
|
||||
// EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
// hybridBayesNet->atGaussian(2)))(assignment),
|
||||
// *gbn.at(2)));
|
||||
// EXPECT(assert_equal(*(*boost::dynamic_pointer_cast<GaussianMixture>(
|
||||
// hybridBayesNet->atGaussian(3)))(assignment),
|
||||
// *gbn.at(3)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
Loading…
Reference in New Issue