Added Shonan Averaging unit tests
parent
fc7944b42d
commit
cb2a8cd950
|
@ -0,0 +1,139 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Unit tests for Shonan Rotation Averaging.
|
||||
Author: Frank Dellaert
|
||||
"""
|
||||
# pylint: disable=invalid-name, no-name-in-module, no-member
|
||||
|
||||
import unittest
|
||||
|
||||
import gtsam
|
||||
from gtsam import ShonanAveraging3, ShonanAveragingParameters3
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
DEFAULT_PARAMS = ShonanAveragingParameters3(
|
||||
gtsam.LevenbergMarquardtParams.CeresDefaults())
|
||||
|
||||
|
||||
def fromExampleName(name: str, parameters=DEFAULT_PARAMS):
|
||||
g2oFile = gtsam.findExampleDataFile(name)
|
||||
return ShonanAveraging3(g2oFile, parameters)
|
||||
|
||||
|
||||
class TestShonanAveraging(GtsamTestCase):
|
||||
"""Tests for Shonan Rotation Averaging."""
|
||||
|
||||
def setUp(self):
|
||||
"""Set up common variables."""
|
||||
self.shonan = fromExampleName("toyExample.g2o")
|
||||
|
||||
def test_checkConstructor(self):
|
||||
self.assertEqual(5, self.shonan.nrUnknowns())
|
||||
|
||||
D = self.shonan.denseD()
|
||||
self.assertEqual((15, 15), D.shape)
|
||||
|
||||
Q = self.shonan.denseQ()
|
||||
self.assertEqual((15, 15), Q.shape)
|
||||
|
||||
L = self.shonan.denseL()
|
||||
self.assertEqual((15, 15), L.shape)
|
||||
|
||||
def test_buildGraphAt(self):
|
||||
graph = self.shonan.buildGraphAt(5)
|
||||
self.assertEqual(7, graph.size())
|
||||
|
||||
def test_checkOptimality(self):
|
||||
random = self.shonan.initializeRandomlyAt(4)
|
||||
lambdaMin = self.shonan.computeMinEigenValue(random)
|
||||
self.assertAlmostEqual(-414.87376657555996,
|
||||
lambdaMin, places=3) # Regression test
|
||||
self.assertFalse(self.shonan.checkOptimality(random))
|
||||
|
||||
def test_tryOptimizingAt3(self):
|
||||
initial = self.shonan.initializeRandomlyAt(3)
|
||||
self.assertFalse(self.shonan.checkOptimality(initial))
|
||||
result = self.shonan.tryOptimizingAt(3, initial)
|
||||
self.assertTrue(self.shonan.checkOptimality(result))
|
||||
lambdaMin = self.shonan.computeMinEigenValue(result)
|
||||
self.assertAlmostEqual(-5.427688831332745e-07,
|
||||
lambdaMin, places=3) # Regression test
|
||||
self.assertAlmostEqual(0, self.shonan.costAt(3, result), places=3)
|
||||
SO3Values = self.shonan.roundSolution(result)
|
||||
self.assertAlmostEqual(0, self.shonan.cost(SO3Values), places=3)
|
||||
|
||||
def test_tryOptimizingAt4(self):
|
||||
random = self.shonan.initializeRandomlyAt(4)
|
||||
result = self.shonan.tryOptimizingAt(4, random)
|
||||
self.assertTrue(self.shonan.checkOptimality(result))
|
||||
self.assertAlmostEqual(0, self.shonan.costAt(4, result), places=2)
|
||||
lambdaMin = self.shonan.computeMinEigenValue(result)
|
||||
self.assertAlmostEqual(-5.427688831332745e-07,
|
||||
lambdaMin, places=3) # Regression test
|
||||
SO3Values = self.shonan.roundSolution(result)
|
||||
self.assertAlmostEqual(0, self.shonan.cost(SO3Values), places=3)
|
||||
|
||||
def test_initializeWithDescent(self):
|
||||
random = self.shonan.initializeRandomlyAt(3)
|
||||
Qstar3 = self.shonan.tryOptimizingAt(3, random)
|
||||
lambdaMin, minEigenVector = self.shonan.computeMinEigenVector(Qstar3)
|
||||
initialQ4 = self.shonan.initializeWithDescent(
|
||||
4, Qstar3, minEigenVector, lambdaMin)
|
||||
self.assertAlmostEqual(5, initialQ4.size())
|
||||
|
||||
def test_run(self):
|
||||
initial = self.shonan.initializeRandomly()
|
||||
result, lambdaMin = self.shonan.run(initial, 5, 10)
|
||||
self.assertAlmostEqual(0, self.shonan.cost(result), places=2)
|
||||
self.assertAlmostEqual(-5.427688831332745e-07,
|
||||
lambdaMin, places=3) # Regression test
|
||||
|
||||
def test_runKlausKarcher(self):
|
||||
# Load 2D toy example
|
||||
lmParams = gtsam.LevenbergMarquardtParams.CeresDefaults()
|
||||
# lmParams.setVerbosityLM("SUMMARY")
|
||||
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt")
|
||||
parameters = gtsam.ShonanAveragingParameters2(lmParams)
|
||||
shonan = gtsam.ShonanAveraging2(g2oFile, parameters)
|
||||
self.assertAlmostEqual(4, shonan.nrUnknowns())
|
||||
|
||||
# Check graph building
|
||||
graph = shonan.buildGraphAt(2)
|
||||
self.assertAlmostEqual(6, graph.size())
|
||||
initial = shonan.initializeRandomly()
|
||||
result, lambdaMin = shonan.run(initial, 2, 10)
|
||||
self.assertAlmostEqual(0.0008211, shonan.cost(result), places=5)
|
||||
self.assertAlmostEqual(0, lambdaMin, places=9) # certificate!
|
||||
|
||||
# Test alpha/beta/gamma prior weighting.
|
||||
def test_PriorWeights(self):
|
||||
lmParams = gtsam.LevenbergMarquardtParams.CeresDefaults()
|
||||
params = ShonanAveragingParameters3(lmParams)
|
||||
self.assertAlmostEqual(0, params.getAnchorWeight(), 1e-9)
|
||||
self.assertAlmostEqual(1, params.getKarcherWeight(), 1e-9)
|
||||
self.assertAlmostEqual(0, params.getGaugesWeight(), 1e-9)
|
||||
alpha, beta, gamma = 100.0, 200.0, 300.0
|
||||
params.setAnchorWeight(alpha)
|
||||
params.setKarcherWeight(beta)
|
||||
params.setGaugesWeight(gamma)
|
||||
self.assertAlmostEqual(alpha, params.getAnchorWeight(), 1e-9)
|
||||
self.assertAlmostEqual(beta, params.getKarcherWeight(), 1e-9)
|
||||
self.assertAlmostEqual(gamma, params.getGaugesWeight(), 1e-9)
|
||||
params.setKarcherWeight(0)
|
||||
shonan = fromExampleName("Klaus3.g2o", params)
|
||||
|
||||
initial = gtsam.Values()
|
||||
for i in range(3):
|
||||
initial.insert(i, gtsam.Rot3())
|
||||
self.assertAlmostEqual(3.0756, shonan.cost(initial), places=3)
|
||||
result, _lambdaMin = shonan.run(initial, 3, 3)
|
||||
self.assertAlmostEqual(0.0015, shonan.cost(result), places=3)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in New Issue