Re-factored constructor to eliminate overly verbose types
							parent
							
								
									263805a329
								
							
						
					
					
						commit
						cab4eaa567
					
				| 
						 | 
				
			
			@ -1,6 +1,6 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
| 
						 | 
				
			
			@ -26,130 +26,135 @@
 | 
			
		|||
#include <gtsam/symbolic/SymbolicFactor-inst.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
  
 | 
			
		||||
  namespace {
 | 
			
		||||
    /* ************************************************************************* */
 | 
			
		||||
    template<class BAYESTREE, class GRAPH>
 | 
			
		||||
    struct ConstructorTraversalData {
 | 
			
		||||
      ConstructorTraversalData* const parentData;
 | 
			
		||||
      typename JunctionTree<BAYESTREE,GRAPH>::sharedNode myJTNode;
 | 
			
		||||
      FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
 | 
			
		||||
      FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
 | 
			
		||||
      ConstructorTraversalData(ConstructorTraversalData* _parentData) : parentData(_parentData) {}
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    /* ************************************************************************* */
 | 
			
		||||
    // Pre-order visitor function
 | 
			
		||||
    template<class BAYESTREE, class GRAPH, class ETREE_NODE>
 | 
			
		||||
    ConstructorTraversalData<BAYESTREE,GRAPH> ConstructorTraversalVisitorPre(
 | 
			
		||||
template <class BAYESTREE, class GRAPH, class ETREE_NODE>
 | 
			
		||||
struct ConstructorTraversalData {
 | 
			
		||||
  typedef typename JunctionTree<BAYESTREE, GRAPH>::Node Node;
 | 
			
		||||
  typedef typename JunctionTree<BAYESTREE, GRAPH>::sharedNode sharedNode;
 | 
			
		||||
 | 
			
		||||
  ConstructorTraversalData* const parentData;
 | 
			
		||||
  sharedNode myJTNode;
 | 
			
		||||
  FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
 | 
			
		||||
  FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
 | 
			
		||||
 | 
			
		||||
  ConstructorTraversalData(ConstructorTraversalData* _parentData)
 | 
			
		||||
      : parentData(_parentData) {}
 | 
			
		||||
 | 
			
		||||
  // Pre-order visitor function
 | 
			
		||||
  static ConstructorTraversalData ConstructorTraversalVisitorPre(
 | 
			
		||||
      const boost::shared_ptr<ETREE_NODE>& node,
 | 
			
		||||
      ConstructorTraversalData<BAYESTREE,GRAPH>& parentData)
 | 
			
		||||
    {
 | 
			
		||||
      // On the pre-order pass, before children have been visited, we just set up a traversal data
 | 
			
		||||
      // structure with its own JT node, and create a child pointer in its parent.
 | 
			
		||||
      ConstructorTraversalData<BAYESTREE,GRAPH> myData = ConstructorTraversalData<BAYESTREE,GRAPH>(&parentData);
 | 
			
		||||
      myData.myJTNode = boost::make_shared<typename JunctionTree<BAYESTREE,GRAPH>::Node>();
 | 
			
		||||
      myData.myJTNode->orderedFrontalKeys.push_back(node->key);
 | 
			
		||||
      myData.myJTNode->factors.insert(myData.myJTNode->factors.begin(), node->factors.begin(), node->factors.end());
 | 
			
		||||
      parentData.myJTNode->children.push_back(myData.myJTNode);
 | 
			
		||||
      return myData;
 | 
			
		||||
    }
 | 
			
		||||
      ConstructorTraversalData& parentData) {
 | 
			
		||||
    // On the pre-order pass, before children have been visited, we just set up
 | 
			
		||||
    // a traversal data structure with its own JT node, and create a child
 | 
			
		||||
    // pointer in its parent.
 | 
			
		||||
    ConstructorTraversalData myData = ConstructorTraversalData(&parentData);
 | 
			
		||||
    myData.myJTNode = boost::make_shared<Node>(node->key, node->factors);
 | 
			
		||||
    parentData.myJTNode->children.push_back(myData.myJTNode);
 | 
			
		||||
    return myData;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
    /* ************************************************************************* */
 | 
			
		||||
    // Post-order visitor function
 | 
			
		||||
    template<class BAYESTREE, class GRAPH, class ETREE_NODE>
 | 
			
		||||
    void ConstructorTraversalVisitorPostAlg2(
 | 
			
		||||
  // Post-order visitor function
 | 
			
		||||
  static void ConstructorTraversalVisitorPostAlg2(
 | 
			
		||||
      const boost::shared_ptr<ETREE_NODE>& ETreeNode,
 | 
			
		||||
      const ConstructorTraversalData<BAYESTREE, GRAPH>& myData)
 | 
			
		||||
    {
 | 
			
		||||
      // In this post-order visitor, we combine the symbolic elimination results from the
 | 
			
		||||
      // elimination tree children and symbolically eliminate the current elimination tree node.  We
 | 
			
		||||
      // then check whether each of our elimination tree child nodes should be merged with us.  The
 | 
			
		||||
      // check for this is that our number of symbolic elimination parents is exactly 1 less than
 | 
			
		||||
      // our child's symbolic elimination parents - this condition indicates that eliminating the
 | 
			
		||||
      // current node did not introduce any parents beyond those already in the child.
 | 
			
		||||
      const ConstructorTraversalData& myData) {
 | 
			
		||||
    // In this post-order visitor, we combine the symbolic elimination results
 | 
			
		||||
    // from the elimination tree children and symbolically eliminate the current
 | 
			
		||||
    // elimination tree node.  We then check whether each of our elimination
 | 
			
		||||
    // tree child nodes should be merged with us.  The check for this is that
 | 
			
		||||
    // our number of symbolic elimination parents is exactly 1 less than
 | 
			
		||||
    // our child's symbolic elimination parents - this condition indicates that
 | 
			
		||||
    // eliminating the current node did not introduce any parents beyond those
 | 
			
		||||
    // already in the child.
 | 
			
		||||
 | 
			
		||||
      // Do symbolic elimination for this node
 | 
			
		||||
      class : public FactorGraph<Factor> {} symbolicFactors;
 | 
			
		||||
      symbolicFactors.reserve(ETreeNode->factors.size() + myData.childSymbolicFactors.size());
 | 
			
		||||
      // Add ETree node factors
 | 
			
		||||
      symbolicFactors += ETreeNode->factors;
 | 
			
		||||
      // Add symbolic factors passed up from children
 | 
			
		||||
      symbolicFactors += myData.childSymbolicFactors;
 | 
			
		||||
    // Do symbolic elimination for this node
 | 
			
		||||
    class : public FactorGraph<Factor> {}
 | 
			
		||||
    symbolicFactors;
 | 
			
		||||
    symbolicFactors.reserve(ETreeNode->factors.size() +
 | 
			
		||||
                            myData.childSymbolicFactors.size());
 | 
			
		||||
    // Add ETree node factors
 | 
			
		||||
    symbolicFactors += ETreeNode->factors;
 | 
			
		||||
    // Add symbolic factors passed up from children
 | 
			
		||||
    symbolicFactors += myData.childSymbolicFactors;
 | 
			
		||||
 | 
			
		||||
      Ordering keyAsOrdering; keyAsOrdering.push_back(ETreeNode->key);
 | 
			
		||||
      std::pair<SymbolicConditional::shared_ptr, SymbolicFactor::shared_ptr> symbolicElimResult =
 | 
			
		||||
        internal::EliminateSymbolic(symbolicFactors, keyAsOrdering);
 | 
			
		||||
    Ordering keyAsOrdering;
 | 
			
		||||
    keyAsOrdering.push_back(ETreeNode->key);
 | 
			
		||||
    std::pair<SymbolicConditional::shared_ptr, SymbolicFactor::shared_ptr>
 | 
			
		||||
        symbolicElimResult =
 | 
			
		||||
            internal::EliminateSymbolic(symbolicFactors, keyAsOrdering);
 | 
			
		||||
 | 
			
		||||
      // Store symbolic elimination results in the parent
 | 
			
		||||
      myData.parentData->childSymbolicConditionals.push_back(symbolicElimResult.first);
 | 
			
		||||
      myData.parentData->childSymbolicFactors.push_back(symbolicElimResult.second);
 | 
			
		||||
    // Store symbolic elimination results in the parent
 | 
			
		||||
    myData.parentData->childSymbolicConditionals.push_back(
 | 
			
		||||
        symbolicElimResult.first);
 | 
			
		||||
    myData.parentData->childSymbolicFactors.push_back(
 | 
			
		||||
        symbolicElimResult.second);
 | 
			
		||||
    sharedNode node = myData.myJTNode;
 | 
			
		||||
 | 
			
		||||
      // Merge our children if they are in our clique - if our conditional has exactly one fewer
 | 
			
		||||
      // parent than our child's conditional.
 | 
			
		||||
      size_t myNrFrontals = 1;
 | 
			
		||||
      const size_t myNrParents = symbolicElimResult.first->nrParents();
 | 
			
		||||
      size_t nrMergedChildren = 0;
 | 
			
		||||
      assert(myData.myJTNode->children.size() == myData.childSymbolicConditionals.size());
 | 
			
		||||
      // Loop over children
 | 
			
		||||
      int combinedProblemSize = (int) (symbolicElimResult.first->size() * symbolicFactors.size());
 | 
			
		||||
      for(size_t child = 0; child < myData.childSymbolicConditionals.size(); ++child) {
 | 
			
		||||
        // Check if we should merge the child
 | 
			
		||||
        if(myNrParents + myNrFrontals == myData.childSymbolicConditionals[child]->nrParents()) {
 | 
			
		||||
          // Get a reference to the child, adjusting the index to account for children previously
 | 
			
		||||
          // merged and removed from the child list.
 | 
			
		||||
          const typename JunctionTree<BAYESTREE, GRAPH>::Node& childToMerge =
 | 
			
		||||
            *myData.myJTNode->children[child - nrMergedChildren];
 | 
			
		||||
          // Merge keys, factors, and children.
 | 
			
		||||
          myData.myJTNode->orderedFrontalKeys.insert(
 | 
			
		||||
              myData.myJTNode->orderedFrontalKeys.begin(),
 | 
			
		||||
              childToMerge.orderedFrontalKeys.begin(),
 | 
			
		||||
              childToMerge.orderedFrontalKeys.end());
 | 
			
		||||
          myData.myJTNode->factors.insert(myData.myJTNode->factors.end(),
 | 
			
		||||
                                          childToMerge.factors.begin(),
 | 
			
		||||
                                          childToMerge.factors.end());
 | 
			
		||||
          myData.myJTNode->children.insert(myData.myJTNode->children.end(),
 | 
			
		||||
                                           childToMerge.children.begin(),
 | 
			
		||||
                                           childToMerge.children.end());
 | 
			
		||||
          // Increment problem size
 | 
			
		||||
          combinedProblemSize = std::max(combinedProblemSize, childToMerge.problemSize_);
 | 
			
		||||
          // Increment number of frontal variables
 | 
			
		||||
          myNrFrontals += childToMerge.orderedFrontalKeys.size();
 | 
			
		||||
          // Remove child from list.
 | 
			
		||||
          myData.myJTNode->children.erase(myData.myJTNode->children.begin() + (child - nrMergedChildren));
 | 
			
		||||
          // Increment number of merged children
 | 
			
		||||
          ++ nrMergedChildren;
 | 
			
		||||
        }
 | 
			
		||||
    // Merge our children if they are in our clique - if our conditional has
 | 
			
		||||
    // exactly one fewer parent than our child's conditional.
 | 
			
		||||
    size_t myNrFrontals = 1;
 | 
			
		||||
    const size_t myNrParents = symbolicElimResult.first->nrParents();
 | 
			
		||||
    size_t nrMergedChildren = 0;
 | 
			
		||||
    assert(node->children.size() == myData.childSymbolicConditionals.size());
 | 
			
		||||
    // Loop over children
 | 
			
		||||
    int combinedProblemSize =
 | 
			
		||||
        (int)(symbolicElimResult.first->size() * symbolicFactors.size());
 | 
			
		||||
    for (size_t i = 0; i < myData.childSymbolicConditionals.size(); ++i) {
 | 
			
		||||
      // Check if we should merge the i^th child
 | 
			
		||||
      if (myNrParents + myNrFrontals ==
 | 
			
		||||
          myData.childSymbolicConditionals[i]->nrParents()) {
 | 
			
		||||
        // Get a reference to the i, adjusting the index to account for children
 | 
			
		||||
        // previously merged and removed from the i list.
 | 
			
		||||
        const Node& child = *node->children[i - nrMergedChildren];
 | 
			
		||||
        // Merge keys, factors, and children.
 | 
			
		||||
        node->orderedFrontalKeys.insert(node->orderedFrontalKeys.begin(),
 | 
			
		||||
                                        child.orderedFrontalKeys.begin(),
 | 
			
		||||
                                        child.orderedFrontalKeys.end());
 | 
			
		||||
        node->factors.insert(node->factors.end(), child.factors.begin(), child.factors.end());
 | 
			
		||||
        node->children.insert(node->children.end(), child.children.begin(), child.children.end());
 | 
			
		||||
        // Increment problem size
 | 
			
		||||
        combinedProblemSize = std::max(combinedProblemSize, child.problemSize_);
 | 
			
		||||
        // Increment number of frontal variables
 | 
			
		||||
        myNrFrontals += child.orderedFrontalKeys.size();
 | 
			
		||||
        // Remove i from list.
 | 
			
		||||
        node->children.erase(node->children.begin() + (i - nrMergedChildren));
 | 
			
		||||
        // Increment number of merged children
 | 
			
		||||
        ++nrMergedChildren;
 | 
			
		||||
      }
 | 
			
		||||
      myData.myJTNode->problemSize_ = combinedProblemSize;
 | 
			
		||||
    }
 | 
			
		||||
    node->problemSize_ = combinedProblemSize;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  template<class BAYESTREE, class GRAPH>
 | 
			
		||||
  template<class ETREE_BAYESNET, class ETREE_GRAPH>
 | 
			
		||||
  JunctionTree<BAYESTREE,GRAPH>::JunctionTree(const EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>& eliminationTree)
 | 
			
		||||
  {
 | 
			
		||||
    gttic(JunctionTree_FromEliminationTree);
 | 
			
		||||
    // Here we rely on the BayesNet having been produced by this elimination tree, such that the
 | 
			
		||||
    // conditionals are arranged in DFS post-order.  We traverse the elimination tree, and inspect
 | 
			
		||||
    // the symbolic conditional corresponding to each node.  The elimination tree node is added to
 | 
			
		||||
    // the same clique with its parent if it has exactly one more Bayes net conditional parent than
 | 
			
		||||
    // does its elimination tree parent.
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
template <class BAYESTREE, class GRAPH>
 | 
			
		||||
template <class ETREE_BAYESNET, class ETREE_GRAPH>
 | 
			
		||||
JunctionTree<BAYESTREE, GRAPH>::JunctionTree(
 | 
			
		||||
    const EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>& eliminationTree) {
 | 
			
		||||
  gttic(JunctionTree_FromEliminationTree);
 | 
			
		||||
  // Here we rely on the BayesNet having been produced by this elimination tree,
 | 
			
		||||
  // such that the conditionals are arranged in DFS post-order.  We traverse the
 | 
			
		||||
  // elimination tree, and inspect the symbolic conditional corresponding to
 | 
			
		||||
  // each node.  The elimination tree node is added to the same clique with its
 | 
			
		||||
  // parent if it has exactly one more Bayes net conditional parent than
 | 
			
		||||
  // does its elimination tree parent.
 | 
			
		||||
 | 
			
		||||
    // Traverse the elimination tree, doing symbolic elimination and merging nodes as we go.  Gather
 | 
			
		||||
    // the created junction tree roots in a dummy Node.
 | 
			
		||||
    typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
 | 
			
		||||
    ConstructorTraversalData<BAYESTREE, GRAPH> rootData(0);
 | 
			
		||||
    rootData.myJTNode = boost::make_shared<typename Base::Node>(); // Make a dummy node to gather the junction tree roots
 | 
			
		||||
    treeTraversal::DepthFirstForest(eliminationTree, rootData,
 | 
			
		||||
      ConstructorTraversalVisitorPre<BAYESTREE,GRAPH,ETreeNode>, ConstructorTraversalVisitorPostAlg2<BAYESTREE,GRAPH,ETreeNode>);
 | 
			
		||||
  // Traverse the elimination tree, doing symbolic elimination and merging nodes
 | 
			
		||||
  // as we go.  Gather the created junction tree roots in a dummy Node.
 | 
			
		||||
  typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
 | 
			
		||||
  typedef ConstructorTraversalData<BAYESTREE, GRAPH, ETreeNode> Data;
 | 
			
		||||
  Data rootData(0);
 | 
			
		||||
  rootData.myJTNode =
 | 
			
		||||
      boost::make_shared<typename Base::Node>();  // Make a dummy node to gather
 | 
			
		||||
                                                  // the junction tree roots
 | 
			
		||||
  treeTraversal::DepthFirstForest(eliminationTree, rootData,
 | 
			
		||||
                                  Data::ConstructorTraversalVisitorPre,
 | 
			
		||||
                                  Data::ConstructorTraversalVisitorPostAlg2);
 | 
			
		||||
 | 
			
		||||
    // Assign roots from the dummy node
 | 
			
		||||
    Base::roots_ = rootData.myJTNode->children;
 | 
			
		||||
  // Assign roots from the dummy node
 | 
			
		||||
  Base::roots_ = rootData.myJTNode->children;
 | 
			
		||||
 | 
			
		||||
    // Transfer remaining factors from elimination tree
 | 
			
		||||
    Base::remainingFactors_ = eliminationTree.remainingFactors();
 | 
			
		||||
  }
 | 
			
		||||
  // Transfer remaining factors from elimination tree
 | 
			
		||||
  Base::remainingFactors_ = eliminationTree.remainingFactors();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} //namespace gtsam
 | 
			
		||||
}  // namespace gtsam
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue