Re-factored constructor to eliminate overly verbose types
parent
263805a329
commit
cab4eaa567
|
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
|
@ -26,130 +26,135 @@
|
|||
#include <gtsam/symbolic/SymbolicFactor-inst.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
namespace {
|
||||
/* ************************************************************************* */
|
||||
template<class BAYESTREE, class GRAPH>
|
||||
struct ConstructorTraversalData {
|
||||
ConstructorTraversalData* const parentData;
|
||||
typename JunctionTree<BAYESTREE,GRAPH>::sharedNode myJTNode;
|
||||
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
|
||||
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
|
||||
ConstructorTraversalData(ConstructorTraversalData* _parentData) : parentData(_parentData) {}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Pre-order visitor function
|
||||
template<class BAYESTREE, class GRAPH, class ETREE_NODE>
|
||||
ConstructorTraversalData<BAYESTREE,GRAPH> ConstructorTraversalVisitorPre(
|
||||
template <class BAYESTREE, class GRAPH, class ETREE_NODE>
|
||||
struct ConstructorTraversalData {
|
||||
typedef typename JunctionTree<BAYESTREE, GRAPH>::Node Node;
|
||||
typedef typename JunctionTree<BAYESTREE, GRAPH>::sharedNode sharedNode;
|
||||
|
||||
ConstructorTraversalData* const parentData;
|
||||
sharedNode myJTNode;
|
||||
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
|
||||
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
|
||||
|
||||
ConstructorTraversalData(ConstructorTraversalData* _parentData)
|
||||
: parentData(_parentData) {}
|
||||
|
||||
// Pre-order visitor function
|
||||
static ConstructorTraversalData ConstructorTraversalVisitorPre(
|
||||
const boost::shared_ptr<ETREE_NODE>& node,
|
||||
ConstructorTraversalData<BAYESTREE,GRAPH>& parentData)
|
||||
{
|
||||
// On the pre-order pass, before children have been visited, we just set up a traversal data
|
||||
// structure with its own JT node, and create a child pointer in its parent.
|
||||
ConstructorTraversalData<BAYESTREE,GRAPH> myData = ConstructorTraversalData<BAYESTREE,GRAPH>(&parentData);
|
||||
myData.myJTNode = boost::make_shared<typename JunctionTree<BAYESTREE,GRAPH>::Node>();
|
||||
myData.myJTNode->orderedFrontalKeys.push_back(node->key);
|
||||
myData.myJTNode->factors.insert(myData.myJTNode->factors.begin(), node->factors.begin(), node->factors.end());
|
||||
parentData.myJTNode->children.push_back(myData.myJTNode);
|
||||
return myData;
|
||||
}
|
||||
ConstructorTraversalData& parentData) {
|
||||
// On the pre-order pass, before children have been visited, we just set up
|
||||
// a traversal data structure with its own JT node, and create a child
|
||||
// pointer in its parent.
|
||||
ConstructorTraversalData myData = ConstructorTraversalData(&parentData);
|
||||
myData.myJTNode = boost::make_shared<Node>(node->key, node->factors);
|
||||
parentData.myJTNode->children.push_back(myData.myJTNode);
|
||||
return myData;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Post-order visitor function
|
||||
template<class BAYESTREE, class GRAPH, class ETREE_NODE>
|
||||
void ConstructorTraversalVisitorPostAlg2(
|
||||
// Post-order visitor function
|
||||
static void ConstructorTraversalVisitorPostAlg2(
|
||||
const boost::shared_ptr<ETREE_NODE>& ETreeNode,
|
||||
const ConstructorTraversalData<BAYESTREE, GRAPH>& myData)
|
||||
{
|
||||
// In this post-order visitor, we combine the symbolic elimination results from the
|
||||
// elimination tree children and symbolically eliminate the current elimination tree node. We
|
||||
// then check whether each of our elimination tree child nodes should be merged with us. The
|
||||
// check for this is that our number of symbolic elimination parents is exactly 1 less than
|
||||
// our child's symbolic elimination parents - this condition indicates that eliminating the
|
||||
// current node did not introduce any parents beyond those already in the child.
|
||||
const ConstructorTraversalData& myData) {
|
||||
// In this post-order visitor, we combine the symbolic elimination results
|
||||
// from the elimination tree children and symbolically eliminate the current
|
||||
// elimination tree node. We then check whether each of our elimination
|
||||
// tree child nodes should be merged with us. The check for this is that
|
||||
// our number of symbolic elimination parents is exactly 1 less than
|
||||
// our child's symbolic elimination parents - this condition indicates that
|
||||
// eliminating the current node did not introduce any parents beyond those
|
||||
// already in the child.
|
||||
|
||||
// Do symbolic elimination for this node
|
||||
class : public FactorGraph<Factor> {} symbolicFactors;
|
||||
symbolicFactors.reserve(ETreeNode->factors.size() + myData.childSymbolicFactors.size());
|
||||
// Add ETree node factors
|
||||
symbolicFactors += ETreeNode->factors;
|
||||
// Add symbolic factors passed up from children
|
||||
symbolicFactors += myData.childSymbolicFactors;
|
||||
// Do symbolic elimination for this node
|
||||
class : public FactorGraph<Factor> {}
|
||||
symbolicFactors;
|
||||
symbolicFactors.reserve(ETreeNode->factors.size() +
|
||||
myData.childSymbolicFactors.size());
|
||||
// Add ETree node factors
|
||||
symbolicFactors += ETreeNode->factors;
|
||||
// Add symbolic factors passed up from children
|
||||
symbolicFactors += myData.childSymbolicFactors;
|
||||
|
||||
Ordering keyAsOrdering; keyAsOrdering.push_back(ETreeNode->key);
|
||||
std::pair<SymbolicConditional::shared_ptr, SymbolicFactor::shared_ptr> symbolicElimResult =
|
||||
internal::EliminateSymbolic(symbolicFactors, keyAsOrdering);
|
||||
Ordering keyAsOrdering;
|
||||
keyAsOrdering.push_back(ETreeNode->key);
|
||||
std::pair<SymbolicConditional::shared_ptr, SymbolicFactor::shared_ptr>
|
||||
symbolicElimResult =
|
||||
internal::EliminateSymbolic(symbolicFactors, keyAsOrdering);
|
||||
|
||||
// Store symbolic elimination results in the parent
|
||||
myData.parentData->childSymbolicConditionals.push_back(symbolicElimResult.first);
|
||||
myData.parentData->childSymbolicFactors.push_back(symbolicElimResult.second);
|
||||
// Store symbolic elimination results in the parent
|
||||
myData.parentData->childSymbolicConditionals.push_back(
|
||||
symbolicElimResult.first);
|
||||
myData.parentData->childSymbolicFactors.push_back(
|
||||
symbolicElimResult.second);
|
||||
sharedNode node = myData.myJTNode;
|
||||
|
||||
// Merge our children if they are in our clique - if our conditional has exactly one fewer
|
||||
// parent than our child's conditional.
|
||||
size_t myNrFrontals = 1;
|
||||
const size_t myNrParents = symbolicElimResult.first->nrParents();
|
||||
size_t nrMergedChildren = 0;
|
||||
assert(myData.myJTNode->children.size() == myData.childSymbolicConditionals.size());
|
||||
// Loop over children
|
||||
int combinedProblemSize = (int) (symbolicElimResult.first->size() * symbolicFactors.size());
|
||||
for(size_t child = 0; child < myData.childSymbolicConditionals.size(); ++child) {
|
||||
// Check if we should merge the child
|
||||
if(myNrParents + myNrFrontals == myData.childSymbolicConditionals[child]->nrParents()) {
|
||||
// Get a reference to the child, adjusting the index to account for children previously
|
||||
// merged and removed from the child list.
|
||||
const typename JunctionTree<BAYESTREE, GRAPH>::Node& childToMerge =
|
||||
*myData.myJTNode->children[child - nrMergedChildren];
|
||||
// Merge keys, factors, and children.
|
||||
myData.myJTNode->orderedFrontalKeys.insert(
|
||||
myData.myJTNode->orderedFrontalKeys.begin(),
|
||||
childToMerge.orderedFrontalKeys.begin(),
|
||||
childToMerge.orderedFrontalKeys.end());
|
||||
myData.myJTNode->factors.insert(myData.myJTNode->factors.end(),
|
||||
childToMerge.factors.begin(),
|
||||
childToMerge.factors.end());
|
||||
myData.myJTNode->children.insert(myData.myJTNode->children.end(),
|
||||
childToMerge.children.begin(),
|
||||
childToMerge.children.end());
|
||||
// Increment problem size
|
||||
combinedProblemSize = std::max(combinedProblemSize, childToMerge.problemSize_);
|
||||
// Increment number of frontal variables
|
||||
myNrFrontals += childToMerge.orderedFrontalKeys.size();
|
||||
// Remove child from list.
|
||||
myData.myJTNode->children.erase(myData.myJTNode->children.begin() + (child - nrMergedChildren));
|
||||
// Increment number of merged children
|
||||
++ nrMergedChildren;
|
||||
}
|
||||
// Merge our children if they are in our clique - if our conditional has
|
||||
// exactly one fewer parent than our child's conditional.
|
||||
size_t myNrFrontals = 1;
|
||||
const size_t myNrParents = symbolicElimResult.first->nrParents();
|
||||
size_t nrMergedChildren = 0;
|
||||
assert(node->children.size() == myData.childSymbolicConditionals.size());
|
||||
// Loop over children
|
||||
int combinedProblemSize =
|
||||
(int)(symbolicElimResult.first->size() * symbolicFactors.size());
|
||||
for (size_t i = 0; i < myData.childSymbolicConditionals.size(); ++i) {
|
||||
// Check if we should merge the i^th child
|
||||
if (myNrParents + myNrFrontals ==
|
||||
myData.childSymbolicConditionals[i]->nrParents()) {
|
||||
// Get a reference to the i, adjusting the index to account for children
|
||||
// previously merged and removed from the i list.
|
||||
const Node& child = *node->children[i - nrMergedChildren];
|
||||
// Merge keys, factors, and children.
|
||||
node->orderedFrontalKeys.insert(node->orderedFrontalKeys.begin(),
|
||||
child.orderedFrontalKeys.begin(),
|
||||
child.orderedFrontalKeys.end());
|
||||
node->factors.insert(node->factors.end(), child.factors.begin(), child.factors.end());
|
||||
node->children.insert(node->children.end(), child.children.begin(), child.children.end());
|
||||
// Increment problem size
|
||||
combinedProblemSize = std::max(combinedProblemSize, child.problemSize_);
|
||||
// Increment number of frontal variables
|
||||
myNrFrontals += child.orderedFrontalKeys.size();
|
||||
// Remove i from list.
|
||||
node->children.erase(node->children.begin() + (i - nrMergedChildren));
|
||||
// Increment number of merged children
|
||||
++nrMergedChildren;
|
||||
}
|
||||
myData.myJTNode->problemSize_ = combinedProblemSize;
|
||||
}
|
||||
node->problemSize_ = combinedProblemSize;
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class BAYESTREE, class GRAPH>
|
||||
template<class ETREE_BAYESNET, class ETREE_GRAPH>
|
||||
JunctionTree<BAYESTREE,GRAPH>::JunctionTree(const EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>& eliminationTree)
|
||||
{
|
||||
gttic(JunctionTree_FromEliminationTree);
|
||||
// Here we rely on the BayesNet having been produced by this elimination tree, such that the
|
||||
// conditionals are arranged in DFS post-order. We traverse the elimination tree, and inspect
|
||||
// the symbolic conditional corresponding to each node. The elimination tree node is added to
|
||||
// the same clique with its parent if it has exactly one more Bayes net conditional parent than
|
||||
// does its elimination tree parent.
|
||||
/* ************************************************************************* */
|
||||
template <class BAYESTREE, class GRAPH>
|
||||
template <class ETREE_BAYESNET, class ETREE_GRAPH>
|
||||
JunctionTree<BAYESTREE, GRAPH>::JunctionTree(
|
||||
const EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>& eliminationTree) {
|
||||
gttic(JunctionTree_FromEliminationTree);
|
||||
// Here we rely on the BayesNet having been produced by this elimination tree,
|
||||
// such that the conditionals are arranged in DFS post-order. We traverse the
|
||||
// elimination tree, and inspect the symbolic conditional corresponding to
|
||||
// each node. The elimination tree node is added to the same clique with its
|
||||
// parent if it has exactly one more Bayes net conditional parent than
|
||||
// does its elimination tree parent.
|
||||
|
||||
// Traverse the elimination tree, doing symbolic elimination and merging nodes as we go. Gather
|
||||
// the created junction tree roots in a dummy Node.
|
||||
typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
|
||||
ConstructorTraversalData<BAYESTREE, GRAPH> rootData(0);
|
||||
rootData.myJTNode = boost::make_shared<typename Base::Node>(); // Make a dummy node to gather the junction tree roots
|
||||
treeTraversal::DepthFirstForest(eliminationTree, rootData,
|
||||
ConstructorTraversalVisitorPre<BAYESTREE,GRAPH,ETreeNode>, ConstructorTraversalVisitorPostAlg2<BAYESTREE,GRAPH,ETreeNode>);
|
||||
// Traverse the elimination tree, doing symbolic elimination and merging nodes
|
||||
// as we go. Gather the created junction tree roots in a dummy Node.
|
||||
typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
|
||||
typedef ConstructorTraversalData<BAYESTREE, GRAPH, ETreeNode> Data;
|
||||
Data rootData(0);
|
||||
rootData.myJTNode =
|
||||
boost::make_shared<typename Base::Node>(); // Make a dummy node to gather
|
||||
// the junction tree roots
|
||||
treeTraversal::DepthFirstForest(eliminationTree, rootData,
|
||||
Data::ConstructorTraversalVisitorPre,
|
||||
Data::ConstructorTraversalVisitorPostAlg2);
|
||||
|
||||
// Assign roots from the dummy node
|
||||
Base::roots_ = rootData.myJTNode->children;
|
||||
// Assign roots from the dummy node
|
||||
Base::roots_ = rootData.myJTNode->children;
|
||||
|
||||
// Transfer remaining factors from elimination tree
|
||||
Base::remainingFactors_ = eliminationTree.remainingFactors();
|
||||
}
|
||||
// Transfer remaining factors from elimination tree
|
||||
Base::remainingFactors_ = eliminationTree.remainingFactors();
|
||||
}
|
||||
|
||||
} //namespace gtsam
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
Loading…
Reference in New Issue