Refactoring to get grouped factors to compile again

release/4.3a0
Frank Dellaert 2015-06-16 20:33:33 -07:00
parent b68f763fe7
commit ca2aa0cfd4
2 changed files with 122 additions and 56 deletions

View File

@ -19,6 +19,7 @@
#pragma once
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/slam/RegularJacobianFactor.h>
#include <boost/foreach.hpp>
#include <vector>
@ -27,15 +28,11 @@ namespace gtsam {
template<size_t D>
class RegularHessianFactor: public HessianFactor {
private:
// Use Eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
typedef Eigen::Map<DVector> DMap;
typedef Eigen::Map<const DVector> ConstDMap;
public:
typedef Eigen::Matrix<double, D, 1> VectorD;
typedef Eigen::Matrix<double, D, D> MatrixD;
/** Construct an n-way factor. Gs contains the upper-triangle blocks of the
* quadratic term (the Hessian matrix) provided in row-order, gs the pieces
* of the linear vector term, and f the constant term.
@ -43,27 +40,68 @@ public:
RegularHessianFactor(const std::vector<Key>& js,
const std::vector<Matrix>& Gs, const std::vector<Vector>& gs, double f) :
HessianFactor(js, Gs, gs, f) {
checkInvariants();
}
/** Construct a binary factor. Gxx are the upper-triangle blocks of the
* quadratic term (the Hessian matrix), gx the pieces of the linear vector
* term, and f the constant term.
*/
RegularHessianFactor(Key j1, Key j2, const Matrix& G11, const Matrix& G12,
const Vector& g1, const Matrix& G22, const Vector& g2, double f) :
RegularHessianFactor(Key j1, Key j2, const MatrixD& G11, const MatrixD& G12,
const VectorD& g1, const MatrixD& G22, const VectorD& g2, double f) :
HessianFactor(j1, j2, G11, G12, g1, G22, g2, f) {
}
/** Construct a ternary factor. Gxx are the upper-triangle blocks of the
* quadratic term (the Hessian matrix), gx the pieces of the linear vector
* term, and f the constant term.
*/
RegularHessianFactor(Key j1, Key j2, Key j3,
const MatrixD& G11, const MatrixD& G12, const MatrixD& G13, const VectorD& g1,
const MatrixD& G22, const MatrixD& G23, const VectorD& g2,
const MatrixD& G33, const VectorD& g3, double f) :
HessianFactor(j1, j2, j3, G11, G12, G13, g1, G22, G23, g2, G33, g3, f) {
}
/** Constructor with an arbitrary number of keys and with the augmented information matrix
* specified as a block matrix. */
template<typename KEYS>
RegularHessianFactor(const KEYS& keys,
const SymmetricBlockMatrix& augmentedInformation) :
HessianFactor(keys, augmentedInformation) {
checkInvariants();
}
/// Construct from RegularJacobianFactor
RegularHessianFactor(const RegularJacobianFactor<D>& jf)
: HessianFactor(jf) {}
/// Construct from a GaussianFactorGraph
RegularHessianFactor(const GaussianFactorGraph& factors,
boost::optional<const Scatter&> scatter = boost::none)
: HessianFactor(factors, scatter) {
checkInvariants();
}
private:
/// Check invariants after construction
void checkInvariants() {
if (info_.cols() != 1 + (info_.nBlocks()-1) * (DenseIndex)D)
throw std::invalid_argument(
"RegularHessianFactor constructor was given non-regular factors");
}
// Use Eigen magic to access raw memory
typedef Eigen::Map<VectorD> DMap;
typedef Eigen::Map<const VectorD> ConstDMap;
// Scratch space for multiplyHessianAdd
mutable std::vector<DVector> y;
// According to link below this is thread-safe.
// http://stackoverflow.com/questions/11160964/multiple-copies-of-the-same-object-c-thread-safe
mutable std::vector<VectorD> y_;
public:
/** y += alpha * A'*A*x */
virtual void multiplyHessianAdd(double alpha, const VectorValues& x,
@ -74,32 +112,32 @@ public:
/** y += alpha * A'*A*x */
void multiplyHessianAdd(double alpha, const double* x,
double* yvalues) const {
// Create a vector of temporary y values, corresponding to rows i
y.resize(size());
BOOST_FOREACH(DVector & yi, y)
// Create a vector of temporary y_ values, corresponding to rows i
y_.resize(size());
BOOST_FOREACH(VectorD & yi, y_)
yi.setZero();
// Accessing the VectorValues one by one is expensive
// So we will loop over columns to access x only once per column
// And fill the above temporary y values, to be added into yvalues after
DVector xj(D);
// And fill the above temporary y_ values, to be added into yvalues after
VectorD xj(D);
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
Key key = keys_[j];
const double* xj = x + key * D;
DenseIndex i = 0;
for (; i < j; ++i)
y[i] += info_(i, j).knownOffDiagonal() * ConstDMap(xj);
y_[i] += info_(i, j).knownOffDiagonal() * ConstDMap(xj);
// blocks on the diagonal are only half
y[i] += info_(j, j).selfadjointView() * ConstDMap(xj);
y_[i] += info_(j, j).selfadjointView() * ConstDMap(xj);
// for below diagonal, we take transpose block from upper triangular part
for (i = j + 1; i < (DenseIndex) size(); ++i)
y[i] += info_(i, j).knownOffDiagonal() * ConstDMap(xj);
y_[i] += info_(i, j).knownOffDiagonal() * ConstDMap(xj);
}
// copy to yvalues
for (DenseIndex i = 0; i < (DenseIndex) size(); ++i) {
Key key = keys_[i];
DMap(yvalues + key * D) += alpha * y[i];
DMap(yvalues + key * D) += alpha * y_[i];
}
}
@ -107,28 +145,27 @@ public:
void multiplyHessianAdd(double alpha, const double* x, double* yvalues,
std::vector<size_t> offsets) const {
// Create a vector of temporary y values, corresponding to rows i
std::vector<Vector> y;
y.reserve(size());
for (const_iterator it = begin(); it != end(); it++)
y.push_back(zero(getDim(it)));
// Create a vector of temporary y_ values, corresponding to rows i
y_.resize(size());
BOOST_FOREACH(VectorD & yi, y_)
yi.setZero();
// Accessing the VectorValues one by one is expensive
// So we will loop over columns to access x only once per column
// And fill the above temporary y values, to be added into yvalues after
// And fill the above temporary y_ values, to be added into yvalues after
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
DenseIndex i = 0;
for (; i < j; ++i)
y[i] += info_(i, j).knownOffDiagonal()
y_[i] += info_(i, j).knownOffDiagonal()
* ConstDMap(x + offsets[keys_[j]],
offsets[keys_[j] + 1] - offsets[keys_[j]]);
// blocks on the diagonal are only half
y[i] += info_(j, j).selfadjointView()
y_[i] += info_(j, j).selfadjointView()
* ConstDMap(x + offsets[keys_[j]],
offsets[keys_[j] + 1] - offsets[keys_[j]]);
// for below diagonal, we take transpose block from upper triangular part
for (i = j + 1; i < (DenseIndex) size(); ++i)
y[i] += info_(i, j).knownOffDiagonal()
y_[i] += info_(i, j).knownOffDiagonal()
* ConstDMap(x + offsets[keys_[j]],
offsets[keys_[j] + 1] - offsets[keys_[j]]);
}
@ -136,7 +173,7 @@ public:
// copy to yvalues
for (DenseIndex i = 0; i < (DenseIndex) size(); ++i)
DMap(yvalues + offsets[keys_[i]],
offsets[keys_[i] + 1] - offsets[keys_[i]]) += alpha * y[i];
offsets[keys_[i] + 1] - offsets[keys_[i]]) += alpha * y_[i];
}
/** Return the diagonal of the Hessian for this factor (raw memory version) */
@ -158,7 +195,7 @@ public:
for (DenseIndex pos = 0; pos < (DenseIndex) size(); ++pos) {
Key j = keys_[pos];
// Get the diagonal block, and insert its diagonal
DVector dj = -info_(pos, size()).knownOffDiagonal();
VectorD dj = -info_(pos, size()).knownOffDiagonal();
DMap(d + D * j) += dj;
}
}

View File

@ -16,6 +16,7 @@
*/
#include <gtsam/slam/RegularHessianFactor.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <CppUnitLite/TestHarness.h>
@ -29,30 +30,58 @@ using namespace gtsam;
using namespace boost::assign;
/* ************************************************************************* */
TEST(RegularHessianFactor, ConstructorNWay)
TEST(RegularHessianFactor, Constructors)
{
Matrix G11 = (Matrix(2,2) << 111, 112, 113, 114).finished();
Matrix G12 = (Matrix(2,2) << 121, 122, 123, 124).finished();
Matrix G13 = (Matrix(2,2) << 131, 132, 133, 134).finished();
// First construct a regular JacobianFactor
Matrix A1 = I_2x2, A2 = I_2x2, A3 = I_2x2;
Vector2 b(1,2);
vector<pair<Key, Matrix> > terms;
terms += make_pair(0, A1), make_pair(1, A2), make_pair(3, A3);
RegularJacobianFactor<2> jf(terms, b);
Matrix G22 = (Matrix(2,2) << 221, 222, 222, 224).finished();
Matrix G23 = (Matrix(2,2) << 231, 232, 233, 234).finished();
// Test conversion from JacobianFactor
RegularHessianFactor<2> factor(jf);
Matrix G33 = (Matrix(2,2) << 331, 332, 332, 334).finished();
Matrix G11 = I_2x2;
Matrix G12 = I_2x2;
Matrix G13 = I_2x2;
Vector g1 = (Vector(2) << -7, -9).finished();
Vector g2 = (Vector(2) << -9, 1).finished();
Vector g3 = (Vector(2) << 2, 3).finished();
Matrix G22 = I_2x2;
Matrix G23 = I_2x2;
Matrix G33 = I_2x2;
Vector2 g1 = b, g2 = b, g3 = b;
double f = 10;
std::vector<Key> js;
js.push_back(0); js.push_back(1); js.push_back(3);
std::vector<Matrix> Gs;
Gs.push_back(G11); Gs.push_back(G12); Gs.push_back(G13); Gs.push_back(G22); Gs.push_back(G23); Gs.push_back(G33);
std::vector<Vector> gs;
gs.push_back(g1); gs.push_back(g2); gs.push_back(g3);
RegularHessianFactor<2> factor(js, Gs, gs, f);
// Test ternary constructor
RegularHessianFactor<2> factor2(0, 1, 3, G11, G12, G13, g1, G22, G23, g2, G33, g3, f);
EXPECT(assert_equal(factor,factor2));
// Test n-way constructor
vector<Key> keys; keys += 0, 1, 3;
vector<Matrix> Gs; Gs += G11, G12, G13, G22, G23, G33;
vector<Vector> gs; gs += g1, g2, g3;
RegularHessianFactor<2> factor3(keys, Gs, gs, f);
EXPECT(assert_equal(factor, factor3));
// Test constructor from Gaussian Factor Graph
GaussianFactorGraph gfg;
gfg += jf;
RegularHessianFactor<2> factor4(gfg);
EXPECT(assert_equal(factor, factor4));
GaussianFactorGraph gfg2;
gfg2 += factor;
RegularHessianFactor<2> factor5(gfg);
EXPECT(assert_equal(factor, factor5));
// Test constructor from Information matrix
Matrix info = factor.augmentedInformation();
vector<size_t> dims; dims += 2, 2, 2;
SymmetricBlockMatrix sym(dims, info, true);
RegularHessianFactor<2> factor6(keys, sym);
EXPECT(assert_equal(factor, factor6));
// multiplyHessianAdd:
{
@ -61,13 +90,13 @@ TEST(RegularHessianFactor, ConstructorNWay)
HessianFactor::const_iterator i1 = factor.begin();
HessianFactor::const_iterator i2 = i1 + 1;
Vector X(6); X << 1,2,3,4,5,6;
Vector Y(6); Y << 2633, 2674, 4465, 4501, 5669, 5696;
Vector Y(6); Y << 9, 12, 9, 12, 9, 12;
EXPECT(assert_equal(Y,AtA*X));
VectorValues x = map_list_of<Key, Vector>
(0, (Vector(2) << 1,2).finished())
(1, (Vector(2) << 3,4).finished())
(3, (Vector(2) << 5,6).finished());
(0, Vector2(1,2))
(1, Vector2(3,4))
(3, Vector2(5,6));
VectorValues expected;
expected.insert(0, Y.segment<2>(0));
@ -77,15 +106,15 @@ TEST(RegularHessianFactor, ConstructorNWay)
// VectorValues version
double alpha = 1.0;
VectorValues actualVV;
actualVV.insert(0, zero(2));
actualVV.insert(1, zero(2));
actualVV.insert(3, zero(2));
actualVV.insert(0, Vector2::Zero());
actualVV.insert(1, Vector2::Zero());
actualVV.insert(3, Vector2::Zero());
factor.multiplyHessianAdd(alpha, x, actualVV);
EXPECT(assert_equal(expected, actualVV));
// RAW ACCESS
Vector expected_y(8); expected_y << 2633, 2674, 4465, 4501, 0, 0, 5669, 5696;
Vector fast_y = gtsam::zero(8);
Vector expected_y(8); expected_y << 9, 12, 9, 12, 0, 0, 9, 12;
Vector fast_y = Vector8::Zero();
double xvalues[8] = {1,2,3,4,0,0,5,6};
factor.multiplyHessianAdd(alpha, xvalues, fast_y.data());
EXPECT(assert_equal(expected_y, fast_y));