Unit tests have been added to cover both coordinate modes, and specify mode where appropriate. Sphere2 expmap/logmap now properly handle antipodal points.

release/4.3a0
Alex Trevor 2014-01-10 15:40:36 -05:00
parent 7484b31bc3
commit c94d5aba26
3 changed files with 70 additions and 13 deletions

View File

@ -109,12 +109,16 @@ Sphere2 Sphere2::retract(const Vector& v, Sphere2::CoordinatesMode mode) const {
if (mode == Sphere2::EXPMAP) {
double xi_hat_norm = xi_hat.norm();
Vector exp_p_xi_hat = cos (xi_hat_norm) * p + sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
// Avoid nan
if (xi_hat_norm == 0.0)
if ((xi_hat_norm == 0.0)) {
if (v.norm () == 0.0)
return Sphere2 (point3 ());
else
return Sphere2 (-point3 ());
}
Vector exp_p_xi_hat = cos (xi_hat_norm) * p + sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
return Sphere2(exp_p_xi_hat);
} else if (mode == Sphere2::RENORM) {
// Project onto the manifold, i.e. the closest point on the circle to the new location;
@ -140,8 +144,10 @@ Sphere2 Sphere2::retract(const Vector& v, Sphere2::CoordinatesMode mode) const {
double theta = acos(p.transpose() * q);
// the below will be nan if theta == 0.0
if (theta == 0.0)
if (p == q)
return (Vector (2) << 0, 0);
else if (p == -q)
return (Vector (2) << M_PI, 0);
Vector result_hat = (theta / sin(theta)) * (q - p * cos(theta));
Vector result = B.transpose() * result_hat;

View File

@ -102,6 +102,13 @@ public:
return p_;
}
/// Return unit-norm Vector
Vector unitVector(boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = basis();
return (p_.vector ());
}
/// Signed, vector-valued error between two directions
Vector error(const Sphere2& q,
boost::optional<Matrix&> H = boost::none) const;

View File

@ -81,9 +81,9 @@ static Sphere2 unrotate_(const Rot3& R, const Sphere2& p) {
}
TEST(Sphere2, unrotate) {
Rot3 R = Rot3::yaw(-M_PI/2.0);
Rot3 R = Rot3::yaw(-M_PI/4.0);
Sphere2 p(1, 0, 0);
Sphere2 expected = Sphere2(0, 1, 0);
Sphere2 expected = Sphere2(1, 1, 0);
Sphere2 actual = R.unrotate (p);
EXPECT(assert_equal(expected, actual, 1e-8));
Matrix actualH, expectedH;
@ -102,8 +102,8 @@ TEST(Sphere2, unrotate) {
//*******************************************************************************
TEST(Sphere2, error) {
Sphere2 p(1, 0, 0), q = p.retract((Vector(2) << 0.5, 0)), //
r = p.retract((Vector(2) << 0.8, 0));
Sphere2 p(1, 0, 0), q = p.retract((Vector(2) << 0.5, 0), Sphere2::RENORM), //
r = p.retract((Vector(2) << 0.8, 0), Sphere2::RENORM);
EXPECT(assert_equal((Vector(2) << 0, 0), p.error(p), 1e-8));
EXPECT(assert_equal((Vector(2) << 0.447214, 0), p.error(q), 1e-5));
EXPECT(assert_equal((Vector(2) << 0.624695, 0), p.error(r), 1e-5));
@ -126,8 +126,8 @@ TEST(Sphere2, error) {
//*******************************************************************************
TEST(Sphere2, distance) {
Sphere2 p(1, 0, 0), q = p.retract((Vector(2) << 0.5, 0)), //
r = p.retract((Vector(2) << 0.8, 0));
Sphere2 p(1, 0, 0), q = p.retract((Vector(2) << 0.5, 0), Sphere2::RENORM), //
r = p.retract((Vector(2) << 0.8, 0), Sphere2::RENORM);
EXPECT_DOUBLES_EQUAL(0, p.distance(p), 1e-8);
EXPECT_DOUBLES_EQUAL(0.44721359549995798, p.distance(q), 1e-8);
EXPECT_DOUBLES_EQUAL(0.6246950475544244, p.distance(r), 1e-8);
@ -171,9 +171,20 @@ TEST(Sphere2, retract) {
Vector v(2);
v << 0.5, 0;
Sphere2 expected(Point3(1, 0, 0.5));
Sphere2 actual = p.retract(v);
Sphere2 actual = p.retract(v, Sphere2::RENORM);
EXPECT(assert_equal(expected, actual, 1e-8));
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
EXPECT(assert_equal(v, p.localCoordinates(actual, Sphere2::RENORM), 1e-8));
}
//*******************************************************************************
TEST(Sphere2, retract_expmap) {
Sphere2 p;
Vector v(2);
v << (M_PI/2.0), 0;
Sphere2 expected(Point3(0, 0, 1));
Sphere2 actual = p.retract(v, Sphere2::EXPMAP);
EXPECT(assert_equal(expected, actual, 1e-8));
EXPECT(assert_equal(v, p.localCoordinates(actual, Sphere2::EXPMAP), 1e-8));
}
//*******************************************************************************
@ -223,6 +234,39 @@ TEST(Sphere2, localCoordinates_retract) {
}
}
//*******************************************************************************
// Let x and y be two Sphere2's.
// The equality x.localCoordinates(x.retract(v)) == v should hold.
TEST(Sphere2, localCoordinates_retract_expmap) {
size_t numIterations = 10000;
Vector minSphereLimit = Vector_(3, -1.0, -1.0, -1.0), maxSphereLimit =
Vector_(3, 1.0, 1.0, 1.0);
Vector minXiLimit = Vector_(2, -M_PI, -M_PI), maxXiLimit = Vector_(2, M_PI, M_PI);
for (size_t i = 0; i < numIterations; i++) {
// Sleep for the random number generator (TODO?: Better create all of them first).
sleep(0);
// Create the two Sphere2s.
// Unlike the above case, we can use any two sphers.
Sphere2 s1(Point3(randomVector(minSphereLimit, maxSphereLimit)));
// Sphere2 s2 (Point3(randomVector(minSphereLimit, maxSphereLimit)));
Vector v12 = randomVector(minXiLimit, maxXiLimit);
// Magnitude of the rotation can be at most pi
if (v12.norm () > M_PI)
v12 = v12 / M_PI;
Sphere2 s2 = s1.retract(v12);
// Check if the local coordinates and retract return the same results.
Vector actual_v12 = s1.localCoordinates(s2);
EXPECT(assert_equal(v12, actual_v12, 1e-3));
Sphere2 actual_s2 = s1.retract(actual_v12);
EXPECT(assert_equal(s2, actual_s2, 1e-3));
}
}
//*******************************************************************************
//TEST( Pose2, between )
//{