Unit test for equidistant fisheye
parent
55c12743fc
commit
c8fc3cd216
|
|
@ -0,0 +1,105 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Cal3Unified unit tests.
|
||||
Author: Frank Dellaert & Duy Nguyen Ta (Python)
|
||||
"""
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
|
||||
class TestCal3Fisheye(GtsamTestCase):
|
||||
|
||||
def test_Cal3Fisheye(self):
|
||||
K = gtsam.Cal3Fisheye()
|
||||
self.assertEqual(K.fx(), 1.)
|
||||
self.assertEqual(K.fy(), 1.)
|
||||
|
||||
def test_distortion(self):
|
||||
"Equidistant fisheye model of focal length f, defined as r/f = tan(theta)"
|
||||
equidistant = gtsam.Cal3Fisheye()
|
||||
x, y, z = 1, 0, 1
|
||||
u, v = equidistant.uncalibrate([x, y])
|
||||
x2, y2 = equidistant.calibrate([u, v])
|
||||
self.assertAlmostEqual(u, np.arctan2(x, z))
|
||||
self.assertAlmostEqual(v, 0)
|
||||
self.assertAlmostEqual(x2, x)
|
||||
self.assertAlmostEqual(y2, 0)
|
||||
|
||||
def test_pinhole(self):
|
||||
"Spatial equidistant camera projection"
|
||||
x, y, z = 1.0, 0.0, 1.0
|
||||
u, v = np.arctan2(x, z), 0.0
|
||||
camera = gtsam.PinholeCameraCal3Fisheye()
|
||||
|
||||
pt1 = camera.Project([x, y, z])
|
||||
self.gtsamAssertEquals(pt1, np.array([x/z, y/z]))
|
||||
|
||||
pt2 = camera.project([x, y, z])
|
||||
self.gtsamAssertEquals(pt2, np.array([u, v]))
|
||||
|
||||
obj1 = camera.backproject([u, v], z)
|
||||
self.gtsamAssertEquals(obj1, np.array([x, y, z]))
|
||||
|
||||
r1 = camera.range(np.array([x, y, z]))
|
||||
self.assertEqual(r1, np.linalg.norm([x, y, z]))
|
||||
|
||||
def test_generic_factor(self):
|
||||
"Evaluate residual using pose and point as state variables"
|
||||
objPoint = np.array([1, 0, 1])
|
||||
imgPoint = np.array([np.arctan2(objPoint[0], objPoint[2]), 0])
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
state = gtsam.Values()
|
||||
measured = imgPoint
|
||||
noiseModel = gtsam.noiseModel.Isotropic.Sigma(2, 1)
|
||||
poseKey = gtsam.symbol_shorthand.P(0)
|
||||
pointKey = gtsam.symbol_shorthand.L(0)
|
||||
k = gtsam.Cal3Fisheye()
|
||||
state.insert_pose3(poseKey, gtsam.Pose3())
|
||||
state.insert_point3(pointKey, gtsam.Point3(objPoint))
|
||||
factor = gtsam.GenericProjectionFactorCal3Fisheye(measured, noiseModel, poseKey, pointKey, k)
|
||||
graph.add(factor)
|
||||
score = graph.error(state)
|
||||
self.assertAlmostEqual(score, 0)
|
||||
|
||||
def test_sfm_factor2(self):
|
||||
"Evaluate residual with camera, pose and point as state variables"
|
||||
objPoint = np.array([1, 0, 1])
|
||||
imgPoint = np.array([np.arctan2(objPoint[0], objPoint[2]), 0])
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
state = gtsam.Values()
|
||||
measured = imgPoint
|
||||
noiseModel = gtsam.noiseModel.Isotropic.Sigma(2, 1)
|
||||
cameraKey = gtsam.symbol_shorthand.K(0)
|
||||
poseKey = gtsam.symbol_shorthand.P(0)
|
||||
landmarkKey = gtsam.symbol_shorthand.L(0)
|
||||
k = gtsam.Cal3Fisheye()
|
||||
state.insert_cal3fisheye(cameraKey, k)
|
||||
state.insert_pose3(poseKey, gtsam.Pose3())
|
||||
state.insert_point3(landmarkKey, gtsam.Point3(objPoint))
|
||||
factor = gtsam.GeneralSFMFactor2Cal3Fisheye(measured, noiseModel, poseKey, landmarkKey, cameraKey)
|
||||
graph.add(factor)
|
||||
score = graph.error(state)
|
||||
self.assertAlmostEqual(score, 0)
|
||||
|
||||
def test_retract(self):
|
||||
expected = gtsam.Cal3Fisheye(100 + 2, 105 + 3, 0.0 + 4, 320 + 5, 240 + 6,
|
||||
1e-3 + 7, 2.0*1e-3 + 8, 3.0*1e-3 + 9, 4.0*1e-3 + 10)
|
||||
K = gtsam.Cal3Fisheye(100, 105, 0.0, 320, 240,
|
||||
1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3)
|
||||
d = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10], order='F')
|
||||
actual = K.retract(d)
|
||||
self.gtsamAssertEquals(actual, expected)
|
||||
np.testing.assert_allclose(d, K.localCoordinates(actual))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
Loading…
Reference in New Issue