Merged in vik748/gtsam (pull request #373)

Adding wrapper for Pose3 for reading g2o files and examples for Pose2 and Pose3 slam using g2o file

Approved-by: Duy-Nguyen Ta <thduynguyen@gmail.com>
Approved-by: Vikrant Shah <vikrantshah@gmail.com>
release/4.3a0
Vikrant Shah 2019-01-31 22:42:46 +00:00 committed by Frank Dellaert
commit c84496632f
3 changed files with 163 additions and 0 deletions

View File

@ -0,0 +1,89 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
A 2D Pose SLAM example that reads input from g2o, converts it to a factor graph
and does the optimization. Output is written on a file, in g2o format
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import argparse
import math
import numpy as np
import matplotlib.pyplot as plt
import gtsam
from gtsam.utils import plot
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=np.float)
parser = argparse.ArgumentParser(
description="A 2D Pose SLAM example that reads input from g2o, "
"converts it to a factor graph and does the optimization. "
"Output is written on a file, in g2o format")
parser.add_argument('-i', '--input', help='input file g2o format')
parser.add_argument('-o', '--output',
help="the path to the output file with optimized graph")
parser.add_argument('-m', '--maxiter', type=int,
help="maximum number of iterations for optimizer")
parser.add_argument('-k', '--kernel', choices=['none', 'huber', 'tukey'],
default="none", help="Type of kernel used")
parser.add_argument("-p", "--plot", action="store_true",
help="Flag to plot results")
args = parser.parse_args()
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt") if args.input is None\
else args.input
maxIterations = 100 if args.maxiter is None else args.maxiter
is3D = False
graph, initial = gtsam.readG2o(g2oFile, is3D)
assert args.kernel == "none", "Supplied kernel type is not yet implemented"
# Add prior on the pose having index (key) = 0
graphWithPrior = graph
priorModel = gtsam.noiseModel_Diagonal.Variances(vector3(1e-6, 1e-6, 1e-8))
graphWithPrior.add(gtsam.PriorFactorPose2(0, gtsam.Pose2(), priorModel))
params = gtsam.GaussNewtonParams()
params.setVerbosity("Termination")
params.setMaxIterations(maxIterations)
# parameters.setRelativeErrorTol(1e-5)
# Create the optimizer ...
optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
# ... and optimize
result = optimizer.optimize()
print("Optimization complete")
print("initial error = ", graph.error(initial))
print("final error = ", graph.error(result))
if args.output is None:
print("\nFactor Graph:\n{}".format(graph))
print("\nInitial Estimate:\n{}".format(initial))
print("Final Result:\n{}".format(result))
else:
outputFile = args.output
print("Writing results to file: ", outputFile)
graphNoKernel, _ = gtsam.readG2o(g2oFile, is3D)
gtsam.writeG2o(graphNoKernel, result, outputFile)
print ("Done!")
if args.plot:
resultPoses = gtsam.extractPose2(result)
for i in range(resultPoses.shape[0]):
plot.plot_pose2(1, gtsam.Pose2(resultPoses[i, :]))
plt.show()

View File

@ -0,0 +1,72 @@
"""
* @file Pose3SLAMExample_initializePose3.cpp
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the
* Pose3 using InitializePose3
* @date Jan 17, 2019
* @author Vikrant Shah based on CPP example by Luca Carlone
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import argparse
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam.utils import plot
def vector6(x, y, z, a, b, c):
"""Create 6d double numpy array."""
return np.array([x, y, z, a, b, c], dtype=np.float)
parser = argparse.ArgumentParser(
description="A 3D Pose SLAM example that reads input from g2o, and "
"initializes Pose3")
parser.add_argument('-i', '--input', help='input file g2o format')
parser.add_argument('-o', '--output',
help="the path to the output file with optimized graph")
parser.add_argument("-p", "--plot", action="store_true",
help="Flag to plot results")
args = parser.parse_args()
g2oFile = gtsam.findExampleDataFile("pose3example.txt") if args.input is None \
else args.input
is3D = True
graph, initial = gtsam.readG2o(g2oFile, is3D)
# Add Prior on the first key
priorModel = gtsam.noiseModel_Diagonal.Variances(vector6(1e-6, 1e-6, 1e-6,
1e-4, 1e-4, 1e-4))
print("Adding prior to g2o file ")
graphWithPrior = graph
firstKey = initial.keys().at(0)
graphWithPrior.add(gtsam.PriorFactorPose3(firstKey, gtsam.Pose3(), priorModel))
params = gtsam.GaussNewtonParams()
params.setVerbosity("Termination") # this will show info about stopping conds
optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
result = optimizer.optimize()
print("Optimization complete")
print("initial error = ", graphWithPrior.error(initial))
print("final error = ", graphWithPrior.error(result))
if args.output is None:
print("Final Result:\n{}".format(result))
else:
outputFile = args.output
print("Writing results to file: ", outputFile)
graphNoKernel, _ = gtsam.readG2o(g2oFile, is3D)
gtsam.writeG2o(graphNoKernel, result, outputFile)
print ("Done!")
if args.plot:
resultPoses = gtsam.allPose3s(result)
for i in range(resultPoses.size()):
plot.plot_pose3(1, resultPoses.atPose3(i))
plt.show()

View File

@ -2464,6 +2464,7 @@ virtual class EssentialMatrixFactor : gtsam::NoiseModelFactor {
};
#include <gtsam/slam/dataset.h>
string findExampleDataFile(string name);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise, bool smart);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
@ -2480,6 +2481,7 @@ void save2D(const gtsam::NonlinearFactorGraph& graph,
string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename, bool is3D);
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& estimate, string filename);