Merge branch 'develop' into improved-hybrid-api
commit
c7e1c60224
|
@ -1,4 +1,16 @@
|
|||
cmake_minimum_required(VERSION 3.0)
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
if (POLICY CMP0082)
|
||||
cmake_policy(SET CMP0082 NEW) # install from sub-directories immediately
|
||||
endif()
|
||||
if (POLICY CMP0102)
|
||||
cmake_policy(SET CMP0102 NEW) # set policy on advanced variables and cmake cache
|
||||
endif()
|
||||
if (POLICY CMP0156)
|
||||
cmake_policy(SET CMP0156 NEW) # new linker strategies
|
||||
endif()
|
||||
if (POLICY CMP0167)
|
||||
cmake_policy(SET CMP0167 OLD) # Don't complain about boost
|
||||
endif()
|
||||
|
||||
# Set the version number for the library
|
||||
set (GTSAM_VERSION_MAJOR 4)
|
||||
|
|
|
@ -6,6 +6,7 @@ file(GLOB cppunitlite_src "*.cpp")
|
|||
add_library(CppUnitLite STATIC ${cppunitlite_src} ${cppunitlite_headers})
|
||||
list(APPEND GTSAM_EXPORTED_TARGETS CppUnitLite)
|
||||
set(GTSAM_EXPORTED_TARGETS "${GTSAM_EXPORTED_TARGETS}" PARENT_SCOPE)
|
||||
target_compile_features(CppUnitLite PUBLIC ${GTSAM_COMPILE_FEATURES_PUBLIC})
|
||||
|
||||
gtsam_assign_source_folders("${cppunitlite_headers};${cppunitlite_src}") # MSVC project structure
|
||||
|
||||
|
|
|
@ -25,7 +25,7 @@ endif()
|
|||
set(BOOST_FIND_MINIMUM_VERSION 1.65)
|
||||
set(BOOST_FIND_MINIMUM_COMPONENTS serialization system filesystem thread program_options date_time timer chrono regex)
|
||||
|
||||
find_package(Boost ${BOOST_FIND_MINIMUM_VERSION} COMPONENTS ${BOOST_FIND_MINIMUM_COMPONENTS})
|
||||
find_package(Boost ${BOOST_FIND_MINIMUM_VERSION} COMPONENTS ${BOOST_FIND_MINIMUM_COMPONENTS} REQUIRED)
|
||||
|
||||
# Required components
|
||||
if(NOT Boost_SERIALIZATION_LIBRARY OR NOT Boost_SYSTEM_LIBRARY OR NOT Boost_FILESYSTEM_LIBRARY OR
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# This file shows how to build and link a user project against GTSAM using CMake
|
||||
###################################################################################
|
||||
# To create your own project, replace "example" with the actual name of your project
|
||||
cmake_minimum_required(VERSION 3.0)
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
project(example CXX)
|
||||
|
||||
# Find GTSAM, either from a local build, or from a Debian/Ubuntu package.
|
||||
|
|
|
@ -330,10 +330,10 @@ AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
|
|||
return DecisionTree<Key, double>(conditionals_, probFunc);
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
|
||||
/* ************************************************************************* */
|
||||
double GaussianMixture::conditionalError(
|
||||
const GaussianConditional::shared_ptr &conditional,
|
||||
const VectorValues &continuousValues) const {
|
||||
auto errorFunc = [&](const GaussianConditional::shared_ptr &conditional) {
|
||||
// Check if valid pointer
|
||||
if (conditional) {
|
||||
return conditional->error(continuousValues) + //
|
||||
|
@ -341,8 +341,17 @@ AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
|
|||
} else {
|
||||
// If not valid, pointer, it means this conditional was pruned,
|
||||
// so we return maximum error.
|
||||
// This way the negative exponential will give
|
||||
// a probability value close to 0.0.
|
||||
return std::numeric_limits<double>::max();
|
||||
}
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
|
||||
const VectorValues &continuousValues) const {
|
||||
auto errorFunc = [&](const GaussianConditional::shared_ptr &conditional) {
|
||||
return conditionalError(conditional, continuousValues);
|
||||
};
|
||||
DecisionTree<Key, double> error_tree(conditionals_, errorFunc);
|
||||
return error_tree;
|
||||
|
@ -350,33 +359,9 @@ AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
|
|||
|
||||
/* *******************************************************************************/
|
||||
double GaussianMixture::error(const HybridValues &values) const {
|
||||
// Check if discrete keys in discrete assignment are
|
||||
// present in the GaussianMixture
|
||||
KeyVector dKeys = this->discreteKeys_.indices();
|
||||
bool valid_assignment = false;
|
||||
for (auto &&kv : values.discrete()) {
|
||||
if (std::find(dKeys.begin(), dKeys.end(), kv.first) != dKeys.end()) {
|
||||
valid_assignment = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// The discrete assignment is not valid so we throw an error.
|
||||
if (!valid_assignment) {
|
||||
throw std::runtime_error(
|
||||
"Invalid discrete values in values. Not all discrete keys specified.");
|
||||
}
|
||||
|
||||
// Directly index to get the conditional, no need to build the whole tree.
|
||||
auto conditional = conditionals_(values.discrete());
|
||||
if (conditional) {
|
||||
return conditional->error(values.continuous()) + //
|
||||
logConstant_ - conditional->logNormalizationConstant();
|
||||
} else {
|
||||
// If not valid, pointer, it means this conditional was pruned,
|
||||
// so we return maximum error.
|
||||
return std::numeric_limits<double>::max();
|
||||
}
|
||||
return conditionalError(conditional, values.continuous());
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
|
|
|
@ -256,6 +256,10 @@ class GTSAM_EXPORT GaussianMixture
|
|||
/// Check whether `given` has values for all frontal keys.
|
||||
bool allFrontalsGiven(const VectorValues &given) const;
|
||||
|
||||
/// Helper method to compute the error of a conditional.
|
||||
double conditionalError(const GaussianConditional::shared_ptr &conditional,
|
||||
const VectorValues &continuousValues) const;
|
||||
|
||||
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
|
|
|
@ -49,15 +49,6 @@ KeySet HybridFactorGraph::discreteKeySet() const {
|
|||
return keys;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::unordered_map<Key, DiscreteKey> HybridFactorGraph::discreteKeyMap() const {
|
||||
std::unordered_map<Key, DiscreteKey> result;
|
||||
for (const DiscreteKey& k : discreteKeys()) {
|
||||
result[k.first] = k;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const KeySet HybridFactorGraph::continuousKeySet() const {
|
||||
KeySet keys;
|
||||
|
|
|
@ -69,9 +69,6 @@ class GTSAM_EXPORT HybridFactorGraph : public FactorGraph<Factor> {
|
|||
/// Get all the discrete keys in the factor graph, as a set of Keys.
|
||||
KeySet discreteKeySet() const;
|
||||
|
||||
/// Get a map from Key to corresponding DiscreteKey.
|
||||
std::unordered_map<Key, DiscreteKey> discreteKeyMap() const;
|
||||
|
||||
/// Get all the continuous keys in the factor graph.
|
||||
const KeySet continuousKeySet() const;
|
||||
|
||||
|
|
|
@ -312,8 +312,8 @@ using Result = std::pair<std::shared_ptr<GaussianConditional>,
|
|||
GaussianMixtureFactor::sharedFactor>;
|
||||
|
||||
/**
|
||||
* Compute the probability q(μ;m) = exp(-error(μ;m)) * sqrt(det(2π Σ_m)
|
||||
* from the residual error at the mean μ.
|
||||
* Compute the probability p(μ;m) = exp(-error(μ;m)) * sqrt(det(2π Σ_m)
|
||||
* from the residual error ||b||^2 at the mean μ.
|
||||
* The residual error contains no keys, and only
|
||||
* depends on the discrete separator if present.
|
||||
*/
|
||||
|
@ -523,19 +523,9 @@ EliminateHybrid(const HybridGaussianFactorGraph &factors,
|
|||
std::inserter(continuousSeparator, continuousSeparator.begin()));
|
||||
|
||||
// Similarly for the discrete separator.
|
||||
auto discreteKeySet = factors.discreteKeySet();
|
||||
// Use set-difference to get the difference in keys
|
||||
KeySet discreteSeparatorSet;
|
||||
std::set_difference(
|
||||
discreteKeySet.begin(), discreteKeySet.end(), frontalKeysSet.begin(),
|
||||
frontalKeysSet.end(),
|
||||
std::inserter(discreteSeparatorSet, discreteSeparatorSet.begin()));
|
||||
// Convert from set of keys to set of DiscreteKeys
|
||||
std::set<DiscreteKey> discreteSeparator;
|
||||
auto discreteKeyMap = factors.discreteKeyMap();
|
||||
for (auto key : discreteSeparatorSet) {
|
||||
discreteSeparator.insert(discreteKeyMap.at(key));
|
||||
}
|
||||
// Since we eliminate all continuous variables first,
|
||||
// the discrete separator will be *all* the discrete keys.
|
||||
std::set<DiscreteKey> discreteSeparator = factors.discreteKeys();
|
||||
|
||||
return hybridElimination(factors, frontalKeys, continuousSeparator,
|
||||
discreteSeparator);
|
||||
|
|
|
@ -434,12 +434,12 @@ static HybridBayesNet CreateBayesNet(double mu0, double mu1, double sigma0,
|
|||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model P(x0)P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
|
||||
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
|
||||
*
|
||||
* P(f01|x1,x0,m1) has different means and same covariance.
|
||||
*
|
||||
* Converting to a factor graph gives us
|
||||
* P(x0)ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
|
||||
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
|
||||
*
|
||||
* If we only have a measurement on z0, then
|
||||
* the probability of m1 should be 0.5/0.5.
|
||||
|
@ -488,12 +488,12 @@ TEST(GaussianMixtureFactor, TwoStateModel) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* Test a model P(x0)P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
|
||||
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
|
||||
*
|
||||
* P(f01|x1,x0,m1) has different means and different covariances.
|
||||
*
|
||||
* Converting to a factor graph gives us
|
||||
* P(x0)ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
|
||||
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
|
||||
*
|
||||
* If we only have a measurement on z0, then
|
||||
* the P(m1) should be 0.5/0.5.
|
||||
|
|
|
@ -118,156 +118,6 @@ TEST(MixtureFactor, Dim) {
|
|||
EXPECT_LONGS_EQUAL(1, mixtureFactor.dim());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Test components with differing means
|
||||
TEST(MixtureFactor, DifferentMeans) {
|
||||
DiscreteKey m1(M(1), 2), m2(M(2), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 0.0, x2 = 1.75, x3 = 2.60;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
values.insert(X(3), x3);
|
||||
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-0);
|
||||
|
||||
auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 0.0, model0);
|
||||
auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 2.0, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
MixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
|
||||
HybridNonlinearFactorGraph hnfg;
|
||||
hnfg.push_back(mixtureFactor);
|
||||
|
||||
f0 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 0.0, model0);
|
||||
f1 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 2.0, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors23{f0, f1};
|
||||
hnfg.push_back(MixtureFactor({X(2), X(3)}, {m2}, factors23));
|
||||
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise);
|
||||
hnfg.push_back(prior);
|
||||
|
||||
hnfg.emplace_shared<PriorFactor<double>>(X(2), 2.0, prior_noise);
|
||||
|
||||
auto hgfg = hnfg.linearize(values);
|
||||
auto bn = hgfg->eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{
|
||||
{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}, {X(3), Vector1(-0.6)}},
|
||||
DiscreteValues{{M(1), 1}, {M(2), 0}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}, {M(2), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}, {M(2), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}, {M(2), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}, {M(2), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Test components with differing covariances
|
||||
TEST(MixtureFactor, DifferentCovariances) {
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x1 = 1.0, x2 = 1.0;
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
|
||||
double between = 0.0;
|
||||
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
|
||||
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
|
||||
|
||||
// Create via toFactorGraph
|
||||
using symbol_shorthand::Z;
|
||||
Matrix H0_1, H0_2, H1_1, H1_2;
|
||||
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H0_1 /*Sp1*/},
|
||||
{X(2), H0_2 /*Tp2*/}};
|
||||
|
||||
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
|
||||
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
|
||||
//
|
||||
{X(1), H1_1 /*Sp1*/},
|
||||
{X(2), H1_2 /*Tp2*/}};
|
||||
auto gm = new gtsam::GaussianMixture(
|
||||
{Z(1)}, {X(1), X(2)}, {m1},
|
||||
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
|
||||
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
|
||||
gtsam::HybridBayesNet bn;
|
||||
bn.emplace_back(gm);
|
||||
|
||||
gtsam::VectorValues measurements;
|
||||
measurements.insert(Z(1), gtsam::Z_1x1);
|
||||
// Create FG with single GaussianMixtureFactor
|
||||
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
|
||||
|
||||
// Linearized prior factor on X1
|
||||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
|
||||
auto hbn = mixture_fg.eliminateSequential();
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
cv.insert(X(2), Vector1(0.0));
|
||||
// P(m1) = [0.5, 0.5], so we should pick 0
|
||||
DiscreteValues dv;
|
||||
dv.insert({M(1), 0});
|
||||
HybridValues expected_values(cv, dv);
|
||||
|
||||
HybridValues actual_values = hbn->optimize();
|
||||
EXPECT(assert_equal(expected_values, actual_values));
|
||||
|
||||
// Check that we get different error values at the MLE point μ.
|
||||
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||
|
||||
HybridValues hv0(cv, DiscreteValues{{M(1), 0}});
|
||||
HybridValues hv1(cv, DiscreteValues{{M(1), 1}});
|
||||
|
||||
AlgebraicDecisionTree<Key> expectedErrorTree(m1, 9.90348755254,
|
||||
0.69314718056);
|
||||
EXPECT(assert_equal(expectedErrorTree, errorTree));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -46,6 +46,12 @@ void IterativeOptimizationParameters::print(ostream &os) const {
|
|||
<< verbosityTranslator(verbosity_) << endl;
|
||||
}
|
||||
|
||||
/*****************************************************************************/
|
||||
bool IterativeOptimizationParameters::equals(
|
||||
const IterativeOptimizationParameters &other, double tol) const {
|
||||
return verbosity_ == other.verbosity();
|
||||
}
|
||||
|
||||
/*****************************************************************************/
|
||||
ostream& operator<<(ostream &os, const IterativeOptimizationParameters &p) {
|
||||
p.print(os);
|
||||
|
|
|
@ -41,13 +41,12 @@ class VectorValues;
|
|||
* parameters for iterative linear solvers
|
||||
*/
|
||||
class IterativeOptimizationParameters {
|
||||
|
||||
public:
|
||||
|
||||
typedef std::shared_ptr<IterativeOptimizationParameters> shared_ptr;
|
||||
enum Verbosity {
|
||||
SILENT = 0, COMPLEXITY, ERROR
|
||||
} verbosity_;
|
||||
enum Verbosity { SILENT = 0, COMPLEXITY, ERROR };
|
||||
|
||||
protected:
|
||||
Verbosity verbosity_;
|
||||
|
||||
public:
|
||||
|
||||
|
@ -71,6 +70,9 @@ public:
|
|||
/* virtual print function */
|
||||
GTSAM_EXPORT virtual void print(std::ostream &os) const;
|
||||
|
||||
GTSAM_EXPORT virtual bool equals(const IterativeOptimizationParameters &other,
|
||||
double tol = 1e-9) const;
|
||||
|
||||
/* for serialization */
|
||||
GTSAM_EXPORT friend std::ostream &operator<<(
|
||||
std::ostream &os, const IterativeOptimizationParameters &p);
|
||||
|
|
|
@ -236,9 +236,9 @@ bool LevenbergMarquardtOptimizer::tryLambda(const GaussianFactorGraph& linear,
|
|||
if (currentState->iterations == 0) {
|
||||
cout << "iter cost cost_change lambda success iter_time" << endl;
|
||||
}
|
||||
cout << setw(4) << currentState->iterations << " " << setw(8) << newError << " " << setw(3) << setprecision(2)
|
||||
<< costChange << " " << setw(3) << setprecision(2) << currentState->lambda << " " << setw(4)
|
||||
<< systemSolvedSuccessfully << " " << setw(3) << setprecision(2) << iterationTime << endl;
|
||||
cout << setw(4) << currentState->iterations << " " << setw(12) << newError << " " << setw(12) << setprecision(2)
|
||||
<< costChange << " " << setw(10) << setprecision(2) << currentState->lambda << " " << setw(6)
|
||||
<< systemSolvedSuccessfully << " " << setw(10) << setprecision(2) << iterationTime << endl;
|
||||
}
|
||||
if (step_is_successful) {
|
||||
// we have successfully decreased the cost and we have good modelFidelity
|
||||
|
|
|
@ -123,6 +123,28 @@ void NonlinearOptimizerParams::print(const std::string& str) const {
|
|||
std::cout.flush();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool NonlinearOptimizerParams::equals(const NonlinearOptimizerParams& other,
|
||||
double tol) const {
|
||||
// Check for equality of shared ptrs
|
||||
bool iterative_params_equal = iterativeParams == other.iterativeParams;
|
||||
// Check equality of components
|
||||
if (iterativeParams && other.iterativeParams) {
|
||||
iterative_params_equal = iterativeParams->equals(*other.iterativeParams);
|
||||
} else {
|
||||
// Check if either is null. If both are null, then true
|
||||
iterative_params_equal = !iterativeParams && !other.iterativeParams;
|
||||
}
|
||||
|
||||
return maxIterations == other.getMaxIterations() &&
|
||||
std::abs(relativeErrorTol - other.getRelativeErrorTol()) <= tol &&
|
||||
std::abs(absoluteErrorTol - other.getAbsoluteErrorTol()) <= tol &&
|
||||
std::abs(errorTol - other.getErrorTol()) <= tol &&
|
||||
verbosityTranslator(verbosity) == other.getVerbosity() &&
|
||||
orderingType == other.orderingType && ordering == other.ordering &&
|
||||
linearSolverType == other.linearSolverType && iterative_params_equal;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::string NonlinearOptimizerParams::linearSolverTranslator(
|
||||
LinearSolverType linearSolverType) const {
|
||||
|
|
|
@ -114,16 +114,7 @@ public:
|
|||
|
||||
virtual void print(const std::string& str = "") const;
|
||||
|
||||
bool equals(const NonlinearOptimizerParams& other, double tol = 1e-9) const {
|
||||
return maxIterations == other.getMaxIterations()
|
||||
&& std::abs(relativeErrorTol - other.getRelativeErrorTol()) <= tol
|
||||
&& std::abs(absoluteErrorTol - other.getAbsoluteErrorTol()) <= tol
|
||||
&& std::abs(errorTol - other.getErrorTol()) <= tol
|
||||
&& verbosityTranslator(verbosity) == other.getVerbosity();
|
||||
// && orderingType.equals(other.getOrderingType()_;
|
||||
// && linearSolverType == other.getLinearSolverType();
|
||||
// TODO: check ordering, iterativeParams, and iterationsHook
|
||||
}
|
||||
bool equals(const NonlinearOptimizerParams& other, double tol = 1e-9) const;
|
||||
|
||||
inline bool isMultifrontal() const {
|
||||
return (linearSolverType == MULTIFRONTAL_CHOLESKY)
|
||||
|
|
|
@ -0,0 +1,122 @@
|
|||
# pylint: disable=unused-import,consider-using-from-import,invalid-name,no-name-in-module,no-member,missing-function-docstring,too-many-locals
|
||||
"""
|
||||
Transcription of SelfCalibrationExample.cpp
|
||||
"""
|
||||
import math
|
||||
|
||||
from gtsam import Cal3_S2
|
||||
from gtsam.noiseModel import Diagonal, Isotropic
|
||||
|
||||
# SFM-specific factors
|
||||
from gtsam import GeneralSFMFactor2Cal3_S2 # does calibration !
|
||||
from gtsam import PinholeCameraCal3_S2
|
||||
|
||||
# Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
|
||||
from gtsam import Point2
|
||||
from gtsam import Point3, Pose3, Rot3
|
||||
|
||||
# Inference and optimization
|
||||
from gtsam import NonlinearFactorGraph, DoglegOptimizer, Values
|
||||
from gtsam.symbol_shorthand import K, L, X
|
||||
|
||||
|
||||
# this is a direct translation of examples/SFMData.h
|
||||
# which is slightly different from python/gtsam/examples/SFMdata.py.
|
||||
def createPoints() -> list[Point3]:
|
||||
"""
|
||||
Create the set of ground-truth landmarks
|
||||
"""
|
||||
return [
|
||||
Point3(10.0, 10.0, 10.0),
|
||||
Point3(-10.0, 10.0, 10.0),
|
||||
Point3(-10.0, -10.0, 10.0),
|
||||
Point3(10.0, -10.0, 10.0),
|
||||
Point3(10.0, 10.0, -10.0),
|
||||
Point3(-10.0, 10.0, -10.0),
|
||||
Point3(-10.0, -10.0, -10.0),
|
||||
Point3(10.0, -10.0, -10.0),
|
||||
]
|
||||
|
||||
|
||||
def createPoses(
|
||||
init: Pose3 = Pose3(Rot3.Ypr(math.pi / 2, 0, -math.pi / 2), Point3(30, 0, 0)),
|
||||
delta: Pose3 = Pose3(
|
||||
Rot3.Ypr(0, -math.pi / 4, 0),
|
||||
Point3(math.sin(math.pi / 4) * 30, 0, 30 * (1 - math.sin(math.pi / 4))),
|
||||
),
|
||||
steps: int = 8,
|
||||
) -> list[Pose3]:
|
||||
"""
|
||||
Create the set of ground-truth poses
|
||||
Default values give a circular trajectory,
|
||||
radius 30 at pi/4 intervals, always facing the circle center
|
||||
"""
|
||||
poses: list[Pose3] = []
|
||||
poses.append(init)
|
||||
for i in range(1, steps):
|
||||
poses.append(poses[i - 1].compose(delta))
|
||||
return poses
|
||||
|
||||
|
||||
def main() -> None:
|
||||
# Create the set of ground-truth
|
||||
points: list[Point3] = createPoints()
|
||||
poses: list[Pose3] = createPoses()
|
||||
|
||||
# Create the factor graph
|
||||
graph = NonlinearFactorGraph()
|
||||
|
||||
# Add a prior on pose x1.
|
||||
# 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
poseNoise = Diagonal.Sigmas([0.1, 0.1, 0.1, 0.3, 0.3, 0.3])
|
||||
graph.addPriorPose3(X(0), poses[0], poseNoise)
|
||||
|
||||
# Simulated measurements from each camera pose, adding them to the factor graph
|
||||
Kcal = Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
|
||||
measurementNoise = Isotropic.Sigma(2, 1.0)
|
||||
for i, pose in enumerate(poses):
|
||||
for j, point in enumerate(points):
|
||||
camera = PinholeCameraCal3_S2(pose, Kcal)
|
||||
measurement: Point2 = camera.project(point)
|
||||
# The only real difference with the Visual SLAM example is that here we
|
||||
# use a different factor type, that also calculates the Jacobian with
|
||||
# respect to calibration
|
||||
graph.add(
|
||||
GeneralSFMFactor2Cal3_S2(
|
||||
measurement,
|
||||
measurementNoise,
|
||||
X(i),
|
||||
L(j),
|
||||
K(0),
|
||||
)
|
||||
)
|
||||
|
||||
# Add a prior on the position of the first landmark.
|
||||
pointNoise = Isotropic.Sigma(3, 0.1)
|
||||
graph.addPriorPoint3(L(0), points[0], pointNoise) # add directly to graph
|
||||
|
||||
# Add a prior on the calibration.
|
||||
calNoise = Diagonal.Sigmas([500, 500, 0.1, 100, 100])
|
||||
graph.addPriorCal3_S2(K(0), Kcal, calNoise)
|
||||
|
||||
# Create the initial estimate to the solution
|
||||
# now including an estimate on the camera calibration parameters
|
||||
initialEstimate = Values()
|
||||
initialEstimate.insert(K(0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0))
|
||||
for i, pose in enumerate(poses):
|
||||
initialEstimate.insert(
|
||||
X(i),
|
||||
pose.compose(
|
||||
Pose3(Rot3.Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))
|
||||
),
|
||||
)
|
||||
for j, point in enumerate(points):
|
||||
initialEstimate.insert(L(j), point + Point3(-0.25, 0.20, 0.15))
|
||||
|
||||
# Optimize the graph and print results
|
||||
result: Values = DoglegOptimizer(graph, initialEstimate).optimize()
|
||||
result.print("Final results:\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue