Renamed ConditionalGaussian -> GaussianConditional

release/4.3a0
Alex Cunningham 2009-11-12 16:41:18 +00:00
parent 40f8ba740d
commit c7b86cec97
24 changed files with 166 additions and 112 deletions

View File

@ -353,9 +353,9 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testConditionalGaussian.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testGaussianConditional.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildTarget>testConditionalGaussian.run</buildTarget>
<buildTarget>testGaussianConditional.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>

View File

@ -23,7 +23,7 @@ namespace gtsam {
* Bayes network
* This is the base class for SymbolicBayesNet, DiscreteBayesNet, and GaussianBayesNet
* corresponding to what is used for the "Conditional" template argument:
* a SymbolicConditional, ConditionalProbabilityTable, or a ConditionalGaussian
* a SymbolicConditional, ConditionalProbabilityTable, or a GaussianConditional
*/
template<class Conditional>
class BayesNet: public Testable<BayesNet<Conditional> > {

View File

@ -23,7 +23,7 @@ namespace gtsam {
/**
* Bayes tree
* Templated on the Conditional class, the type of node in the underlying Bayes chain.
* This could be a ConditionalProbabilityTable, a ConditionalGaussian, or a SymbolicConditional
* This could be a ConditionalProbabilityTable, a GaussianConditional, or a SymbolicConditional
*/
template<class Conditional>
class BayesTree: public Testable<BayesTree<Conditional> > {

View File

@ -16,7 +16,7 @@ using namespace gtsam;
// Explicitly instantiate so we don't have to include everywhere
#include "BayesNet-inl.h"
template class BayesNet<ConditionalGaussian>;
template class BayesNet<GaussianConditional>;
// trick from some reading group
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
@ -27,8 +27,8 @@ namespace gtsam {
/* ************************************************************************* */
GaussianBayesNet scalarGaussian(const string& key, double mu, double sigma) {
GaussianBayesNet bn;
ConditionalGaussian::shared_ptr
conditional(new ConditionalGaussian(key, Vector_(1,mu), eye(1), Vector_(1,sigma)));
GaussianConditional::shared_ptr
conditional(new GaussianConditional(key, Vector_(1,mu), eye(1), Vector_(1,sigma)));
bn.push_back(conditional);
return bn;
}
@ -37,8 +37,8 @@ GaussianBayesNet scalarGaussian(const string& key, double mu, double sigma) {
GaussianBayesNet simpleGaussian(const string& key, const Vector& mu, double sigma) {
GaussianBayesNet bn;
size_t n = mu.size();
ConditionalGaussian::shared_ptr
conditional(new ConditionalGaussian(key, mu, eye(n), repeat(n,sigma)));
GaussianConditional::shared_ptr
conditional(new GaussianConditional(key, mu, eye(n), repeat(n,sigma)));
bn.push_back(conditional);
return bn;
}
@ -46,14 +46,14 @@ GaussianBayesNet simpleGaussian(const string& key, const Vector& mu, double sigm
/* ************************************************************************* */
void push_front(GaussianBayesNet& bn, const string& key, Vector d, Matrix R,
const string& name1, Matrix S, Vector sigmas) {
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(key, d, R, name1, S, sigmas));
GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, sigmas));
bn.push_front(cg);
}
/* ************************************************************************* */
void push_front(GaussianBayesNet& bn, const string& key, Vector d, Matrix R,
const string& name1, Matrix S, const string& name2, Matrix T, Vector sigmas) {
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(key, d, R, name1, S, name2, T, sigmas));
GaussianConditional::shared_ptr cg(new GaussianConditional(key, d, R, name1, S, name2, T, sigmas));
bn.push_front(cg);
}
@ -63,7 +63,7 @@ VectorConfig optimize(const GaussianBayesNet& bn)
VectorConfig result;
/** solve each node in turn in topological sort order (parents first)*/
BOOST_REVERSE_FOREACH(ConditionalGaussian::shared_ptr cg, bn) {
BOOST_REVERSE_FOREACH(GaussianConditional::shared_ptr cg, bn) {
Vector x = cg->solve(result); // Solve for that variable
result.insert(cg->key(),x); // store result in partial solution
}
@ -76,7 +76,7 @@ pair<Matrix,Vector> matrix(const GaussianBayesNet& bn) {
// add the dimensions of all variables to get matrix dimension
// and at the same time create a mapping from keys to indices
size_t N=0; map<string,size_t> mapping;
BOOST_FOREACH(ConditionalGaussian::shared_ptr cg,bn) {
BOOST_FOREACH(GaussianConditional::shared_ptr cg,bn) {
mapping.insert(make_pair(cg->key(),N));
N += cg->dim();
}
@ -87,7 +87,7 @@ pair<Matrix,Vector> matrix(const GaussianBayesNet& bn) {
string key; size_t I;
FOREACH_PAIR(key,I,mapping) {
// find corresponding conditional
ConditionalGaussian::shared_ptr cg = bn[key];
GaussianConditional::shared_ptr cg = bn[key];
// get RHS and copy to d
const Vector& d_ = cg->get_d();
@ -102,7 +102,7 @@ pair<Matrix,Vector> matrix(const GaussianBayesNet& bn) {
R(I+i,I+j) = R_(i,j);
// loop over S matrices and copy them into R
ConditionalGaussian::const_iterator keyS = cg->parentsBegin();
GaussianConditional::const_iterator keyS = cg->parentsBegin();
for (; keyS!=cg->parentsEnd(); keyS++) {
Matrix S = keyS->second; // get S matrix
const size_t m = S.size1(), n = S.size2(); // find S size

View File

@ -11,13 +11,13 @@
#include <list>
#include "ConditionalGaussian.h"
#include "GaussianConditional.h"
#include "BayesNet.h"
namespace gtsam {
/** A Bayes net made from linear-Gaussian densities */
typedef BayesNet<ConditionalGaussian> GaussianBayesNet;
typedef BayesNet<GaussianConditional> GaussianBayesNet;
/** Create a scalar Gaussian */
GaussianBayesNet scalarGaussian(const std::string& key, double mu=0.0, double sigma=1.0);

View File

@ -1,5 +1,5 @@
/**
* @file ConditionalGaussian.cpp
* @file GaussianConditional.cpp
* @brief Conditional Gaussian Base class
* @author Christian Potthast
*/
@ -7,26 +7,26 @@
#include <string.h>
#include <boost/numeric/ublas/vector.hpp>
#include "Ordering.h"
#include "ConditionalGaussian.h"
#include "GaussianConditional.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(const string& key,Vector d, Matrix R, Vector sigmas) :
GaussianConditional::GaussianConditional(const string& key,Vector d, Matrix R, Vector sigmas) :
Conditional (key), R_(R),sigmas_(sigmas),d_(d)
{
}
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(const string& key, Vector d, Matrix R,
GaussianConditional::GaussianConditional(const string& key, Vector d, Matrix R,
const string& name1, Matrix S, Vector sigmas) :
Conditional (key), R_(R), sigmas_(sigmas), d_(d) {
parents_.insert(make_pair(name1, S));
}
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(const string& key, Vector d, Matrix R,
GaussianConditional::GaussianConditional(const string& key, Vector d, Matrix R,
const string& name1, Matrix S, const string& name2, Matrix T, Vector sigmas) :
Conditional (key), R_(R),sigmas_(sigmas), d_(d) {
parents_.insert(make_pair(name1, S));
@ -34,13 +34,13 @@ ConditionalGaussian::ConditionalGaussian(const string& key, Vector d, Matrix R,
}
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(const string& key,
GaussianConditional::GaussianConditional(const string& key,
const Vector& d, const Matrix& R, const map<string, Matrix>& parents, Vector sigmas) :
Conditional (key), R_(R),sigmas_(sigmas), d_(d), parents_(parents) {
}
/* ************************************************************************* */
void ConditionalGaussian::print(const string &s) const
void GaussianConditional::print(const string &s) const
{
cout << s << ": density on " << key_ << endl;
gtsam::print(R_,"R");
@ -54,9 +54,9 @@ void ConditionalGaussian::print(const string &s) const
}
/* ************************************************************************* */
bool ConditionalGaussian::equals(const Conditional &c, double tol) const {
bool GaussianConditional::equals(const Conditional &c, double tol) const {
if (!Conditional::equals(c)) return false;
const ConditionalGaussian* p = dynamic_cast<const ConditionalGaussian*> (&c);
const GaussianConditional* p = dynamic_cast<const GaussianConditional*> (&c);
if (p == NULL) return false;
Parents::const_iterator it = parents_.begin();
@ -85,7 +85,7 @@ bool ConditionalGaussian::equals(const Conditional &c, double tol) const {
}
/* ************************************************************************* */
list<string> ConditionalGaussian::parents() const {
list<string> GaussianConditional::parents() const {
list<string> result;
for (Parents::const_iterator it = parents_.begin(); it != parents_.end(); it++)
result.push_back(it->first);
@ -93,7 +93,7 @@ list<string> ConditionalGaussian::parents() const {
}
/* ************************************************************************* */
Vector ConditionalGaussian::solve(const VectorConfig& x) const {
Vector GaussianConditional::solve(const VectorConfig& x) const {
Vector rhs = d_;
for (Parents::const_iterator it = parents_.begin(); it
!= parents_.end(); it++) {

View File

@ -1,5 +1,5 @@
/**
* @file ConditionalGaussian.h
* @file GaussianConditional.h
* @brief Conditional Gaussian Base class
* @author Christian Potthast
*/
@ -28,12 +28,12 @@ class Ordering;
* It has a set of parents y,z, etc. and implements a probability density on x.
* The negative log-probability is given by || Rx - (d - Sy - Tz - ...)||^2
*/
class ConditionalGaussian : public Conditional {
class GaussianConditional : public Conditional {
public:
typedef std::map<std::string, Matrix> Parents;
typedef Parents::const_iterator const_iterator;
typedef boost::shared_ptr<ConditionalGaussian> shared_ptr;
typedef boost::shared_ptr<GaussianConditional> shared_ptr;
protected:
@ -52,41 +52,41 @@ protected:
public:
/** default constructor needed for serialization */
ConditionalGaussian(){}
GaussianConditional(){}
/** constructor */
ConditionalGaussian(const std::string& key) :
GaussianConditional(const std::string& key) :
Conditional (key) {}
/** constructor with no parents
* |Rx-d|
*/
ConditionalGaussian(const std::string& key, Vector d, Matrix R, Vector sigmas);
GaussianConditional(const std::string& key, Vector d, Matrix R, Vector sigmas);
/** constructor with only one parent
* |Rx+Sy-d|
*/
ConditionalGaussian(const std::string& key, Vector d, Matrix R,
GaussianConditional(const std::string& key, Vector d, Matrix R,
const std::string& name1, Matrix S, Vector sigmas);
/** constructor with two parents
* |Rx+Sy+Tz-d|
*/
ConditionalGaussian(const std::string& key, Vector d, Matrix R,
GaussianConditional(const std::string& key, Vector d, Matrix R,
const std::string& name1, Matrix S, const std::string& name2, Matrix T, Vector sigmas);
/**
* constructor with number of arbitrary parents
* |Rx+sum(Ai*xi)-d|
*/
ConditionalGaussian(const std::string& key, const Vector& d,
GaussianConditional(const std::string& key, const Vector& d,
const Matrix& R, const Parents& parents, Vector sigmas);
/** deconstructor */
virtual ~ConditionalGaussian() {}
virtual ~GaussianConditional() {}
/** print */
void print(const std::string& = "ConditionalGaussian") const;
void print(const std::string& = "GaussianConditional") const;
/** equals function */
bool equals(const Conditional &cg, double tol = 1e-9) const;
@ -97,7 +97,7 @@ public:
/** return all parents */
std::list<std::string> parents() const;
/** return stuff contained in ConditionalGaussian */
/** return stuff contained in GaussianConditional */
const Vector& get_d() const {return d_;}
const Matrix& get_R() const {return R_;}
const Vector& get_sigmas() const {return sigmas_;}

View File

@ -11,7 +11,7 @@
#include "Matrix.h"
#include "Ordering.h"
#include "ConditionalGaussian.h"
#include "GaussianConditional.h"
#include "GaussianFactor.h"
using namespace std;
@ -26,7 +26,7 @@ using namespace gtsam;
typedef pair<const string, Matrix>& mypair;
/* ************************************************************************* */
GaussianFactor::GaussianFactor(const boost::shared_ptr<ConditionalGaussian>& cg) :
GaussianFactor::GaussianFactor(const boost::shared_ptr<GaussianConditional>& cg) :
b_(cg->get_d()) {
As_.insert(make_pair(cg->key(), cg->get_R()));
std::map<std::string, Matrix>::const_iterator it = cg->parentsBegin();
@ -282,11 +282,11 @@ void GaussianFactor::append_factor(GaussianFactor::shared_ptr f, const size_t m,
/* Note, in place !!!!
* Do incomplete QR factorization for the first n columns
* We will do QR on all matrices and on RHS
* Then take first n rows and make a ConditionalGaussian,
* Then take first n rows and make a GaussianConditional,
* and last rows to make a new joint linear factor on separator
*/
/* ************************************************************************* */
pair<ConditionalGaussian::shared_ptr, GaussianFactor::shared_ptr>
pair<GaussianConditional::shared_ptr, GaussianFactor::shared_ptr>
GaussianFactor::eliminate(const string& key) const
{
bool verbose = false;
@ -297,7 +297,7 @@ GaussianFactor::eliminate(const string& key) const
if (it==As_.end()) {
// Conditional Gaussian is just a parent-less node with P(x)=1
GaussianFactor::shared_ptr lf(new GaussianFactor);
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(key));
GaussianConditional::shared_ptr cg(new GaussianConditional(key));
return make_pair(cg,lf);
}
@ -339,7 +339,7 @@ GaussianFactor::eliminate(const string& key) const
}
// create base conditional Gaussian
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(key,
GaussianConditional::shared_ptr cg(new GaussianConditional(key,
sub(d, 0, n1), // form d vector
sub(R, 0, n1, 0, n1), // form R matrix
sub(newSigmas, 0, n1))); // get standard deviations

View File

@ -19,7 +19,7 @@
namespace gtsam {
class ConditionalGaussian;
class GaussianConditional;
class Ordering;
/**
@ -95,7 +95,7 @@ public:
}
/** Construct from Conditional Gaussian */
GaussianFactor(const boost::shared_ptr<ConditionalGaussian>& cg);
GaussianFactor(const boost::shared_ptr<GaussianConditional>& cg);
/**
* Constructor that combines a set of factors
@ -232,7 +232,7 @@ public:
* @param key the key of the node to be eliminated
* @return a new factor and a conditional gaussian on the eliminated variable
*/
std::pair<boost::shared_ptr<ConditionalGaussian>, shared_ptr>
std::pair<boost::shared_ptr<GaussianConditional>, shared_ptr>
eliminate(const std::string& key) const;
/**

View File

@ -42,9 +42,9 @@ set<string> GaussianFactorGraph::find_separator(const string& key) const
}
/* ************************************************************************* */
ConditionalGaussian::shared_ptr
GaussianConditional::shared_ptr
GaussianFactorGraph::eliminateOne(const std::string& key) {
return gtsam::eliminateOne<GaussianFactor,ConditionalGaussian>(*this, key);
return gtsam::eliminateOne<GaussianFactor,GaussianConditional>(*this, key);
}
/* ************************************************************************* */
@ -53,7 +53,7 @@ GaussianFactorGraph::eliminate(const Ordering& ordering)
{
GaussianBayesNet chordalBayesNet; // empty
BOOST_FOREACH(string key, ordering) {
ConditionalGaussian::shared_ptr cg = eliminateOne(key);
GaussianConditional::shared_ptr cg = eliminateOne(key);
chordalBayesNet.push_back(cg);
}
return chordalBayesNet;
@ -75,7 +75,7 @@ GaussianFactorGraph::eliminate_(const Ordering& ordering)
{
boost::shared_ptr<GaussianBayesNet> chordalBayesNet(new GaussianBayesNet); // empty
BOOST_FOREACH(string key, ordering) {
ConditionalGaussian::shared_ptr cg = eliminateOne(key);
GaussianConditional::shared_ptr cg = eliminateOne(key);
chordalBayesNet->push_back(cg);
}
return chordalBayesNet;

View File

@ -66,7 +66,7 @@ namespace gtsam {
* Eliminates the factors from the factor graph through findAndRemoveFactors
* and adds a new factor on the separator to the factor graph
*/
ConditionalGaussian::shared_ptr eliminateOne(const std::string& key);
GaussianConditional::shared_ptr eliminateOne(const std::string& key);
/**
* eliminate factor graph in place(!) in the given order, yielding

View File

@ -85,16 +85,16 @@ testSymbolicBayesNet_LDADD = libgtsam.la
# Gaussian inference
headers += GaussianFactorSet.h
sources += VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp ConditionalGaussian.cpp GaussianBayesNet.cpp
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testConditionalGaussian testGaussianBayesNet
sources += VectorConfig.cpp GaussianFactor.cpp GaussianFactorGraph.cpp GaussianConditional.cpp GaussianBayesNet.cpp
check_PROGRAMS += testVectorConfig testGaussianFactor testGaussianFactorGraph testGaussianConditional testGaussianBayesNet
testVectorConfig_SOURCES = testVectorConfig.cpp
testVectorConfig_LDADD = libgtsam.la
testGaussianFactor_SOURCES = $(example) testGaussianFactor.cpp
testGaussianFactor_LDADD = libgtsam.la
testGaussianFactorGraph_SOURCES = $(example) testGaussianFactorGraph.cpp
testGaussianFactorGraph_LDADD = libgtsam.la
testConditionalGaussian_SOURCES = $(example) testConditionalGaussian.cpp
testConditionalGaussian_LDADD = libgtsam.la
testGaussianConditional_SOURCES = $(example) testGaussianConditional.cpp
testGaussianConditional_LDADD = libgtsam.la
testGaussianBayesNet_SOURCES = $(example) testGaussianBayesNet.cpp
testGaussianBayesNet_LDADD = libgtsam.la
@ -112,13 +112,16 @@ timeGaussianFactorGraph: LDFLAGS += smallExample.o -L.libs -lgtsam -L../CppUnitL
headers += NonlinearFactorGraph.h NonlinearFactorGraph-inl.h
headers += NonlinearOptimizer.h NonlinearOptimizer-inl.h
sources += NonlinearFactor.cpp
check_PROGRAMS += testNonlinearFactor testNonlinearFactorGraph testNonlinearOptimizer
sources += NonlinearEquality.cpp
check_PROGRAMS += testNonlinearFactor testNonlinearFactorGraph testNonlinearOptimizer testNonlinearEquality
testNonlinearFactor_SOURCES = $(example) testNonlinearFactor.cpp
testNonlinearFactor_LDADD = libgtsam.la
testNonlinearFactorGraph_SOURCES = $(example) testNonlinearFactorGraph.cpp
testNonlinearFactorGraph_LDADD = libgtsam.la
testNonlinearOptimizer_SOURCES = $(example) testNonlinearOptimizer.cpp
testNonlinearOptimizer_LDADD = libgtsam.la
testNonlinearEquality_SOURCES = testNonlinearEquality.cpp
testNonlinearEquality_LDADD = libgtsam.la
# geometry
sources += Point2.cpp Pose2.cpp Point3.cpp Rot3.cpp Pose3.cpp Cal3_S2.cpp

View File

@ -0,0 +1,9 @@
/*
* @file NonlinearEquality.cpp
* @brief
* @author alexgc
*/
#include "NonlinearEquality.h"

26
cpp/NonlinearEquality.h Normal file
View File

@ -0,0 +1,26 @@
/*
* @file NonlinearEquality.h
* @brief Factor to handle enforced equality between factors
* @author Alex Cunningham
*/
#pragma once
#include "NonlinearFactor.h"
namespace gtsam {
/**
* An equality factor that forces either one variable to a constant,
* or a set of variables to be equal to each other.
* Throws an error at linearization if the constraints are not met.
*/
template<class Config>
class NonlinearEquality : public NonlinearFactor<Config>{
public:
NonlinearEquality();
virtual ~NonlinearEquality();
};
}

View File

@ -52,19 +52,19 @@ class GaussianFactor {
pair<Matrix,Vector> matrix(const Ordering& ordering) const;
};
class ConditionalGaussian {
ConditionalGaussian();
ConditionalGaussian(string key,
class GaussianConditional {
GaussianConditional();
GaussianConditional(string key,
Vector d,
Matrix R,
Vector sigmas);
ConditionalGaussian(string key,
GaussianConditional(string key,
Vector d,
Matrix R,
string name1,
Matrix S,
Vector sigmas);
ConditionalGaussian(string key,
GaussianConditional(string key,
Vector d,
Matrix R,
string name1,
@ -75,15 +75,15 @@ class ConditionalGaussian {
void print(string s) const;
Vector solve(const VectorConfig& x);
void add(string key, Matrix S);
bool equals(const ConditionalGaussian &cg, double tol) const;
bool equals(const GaussianConditional &cg, double tol) const;
};
class GaussianBayesNet {
GaussianBayesNet();
void print(string s) const;
bool equals(const GaussianBayesNet& cbn, double tol) const;
void push_back(ConditionalGaussian* conditional);
void push_front(ConditionalGaussian* conditional);
void push_back(GaussianConditional* conditional);
void push_front(GaussianConditional* conditional);
};
class GaussianFactorGraph {
@ -96,7 +96,7 @@ class GaussianFactorGraph {
void print(string s) const;
bool equals(const GaussianFactorGraph& lfgraph, double tol) const;
ConditionalGaussian* eliminateOne(string key);
GaussianConditional* eliminateOne(string key);
GaussianBayesNet* eliminate_(const Ordering& ordering);
VectorConfig* optimize_(const Ordering& ordering);
pair<Matrix,Vector> matrix(const Ordering& ordering) const;

View File

@ -204,9 +204,9 @@ GaussianBayesNet createSmallGaussianBayesNet()
Vector tau(1); tau(0) = 1.0;
// define nodes and specify in reverse topological sort (i.e. parents last)
ConditionalGaussian::shared_ptr
Px_y(new ConditionalGaussian("x",d1,R11,"y",S12,tau)),
Py(new ConditionalGaussian("y",d2,R22,tau));
GaussianConditional::shared_ptr
Px_y(new GaussianConditional("x",d1,R11,"y",S12,tau)),
Py(new GaussianConditional("y",d2,R22,tau));
GaussianBayesNet cbn;
cbn.push_back(Px_y);
cbn.push_back(Py);
@ -502,11 +502,11 @@ VectorConfig createMultiConstraintConfig() {
// Matrix R = eye(2);
// Vector d = c["x1"];
// double sigma = 0.1;
// ConditionalGaussian::shared_ptr f1(new ConditionalGaussian(d/sigma, R/sigma));
// GaussianConditional::shared_ptr f1(new GaussianConditional(d/sigma, R/sigma));
// cbn.insert("x1", f1);
//
// // add a delta function to the cbn
// ConstrainedConditionalGaussian::shared_ptr f2(new ConstrainedConditionalGaussian); //(c["x0"], "x0"));
// ConstrainedGaussianConditional::shared_ptr f2(new ConstrainedGaussianConditional); //(c["x0"], "x0"));
// cbn.insert_df("x0", f2);
//
// return cbn;

View File

@ -17,7 +17,7 @@ using namespace boost::assign;
using namespace gtsam;
typedef BayesTree<ConditionalGaussian> Gaussian;
typedef BayesTree<GaussianConditional> Gaussian;
// Conditionals for ASIA example from the tutorial with A and D evidence
SymbolicConditional::shared_ptr B(new SymbolicConditional("B")), L(
@ -226,7 +226,7 @@ TEST( BayesTree, balanced_smoother_shortcuts )
CHECK(assert_equal(empty,actual2,1e-4));
// Check the conditional P(C3|Root), which should be equal to P(x2|x4)
ConditionalGaussian::shared_ptr p_x2_x4 = chordalBayesNet["x2"];
GaussianConditional::shared_ptr p_x2_x4 = chordalBayesNet["x2"];
GaussianBayesNet expected3; expected3.push_back(p_x2_x4);
Gaussian::sharedClique C3 = bayesTree["x1"];
GaussianBayesNet actual3 = C3->shortcut<GaussianFactor>(R);
@ -252,7 +252,7 @@ TEST( BayesTree, balanced_smoother_clique_marginals )
push_front(expected,"x1", zero(2), eye(2), "x2", A12, sigma);
Gaussian::sharedClique R = bayesTree.root(), C3 = bayesTree["x1"];
FactorGraph<GaussianFactor> marginal = C3->marginal<GaussianFactor>(R);
GaussianBayesNet actual = eliminate<GaussianFactor,ConditionalGaussian>(marginal,C3->keys());
GaussianBayesNet actual = eliminate<GaussianFactor,GaussianConditional>(marginal,C3->keys());
CHECK(assert_equal(expected,actual,1e-4));
}

View File

@ -42,7 +42,7 @@ TEST( GaussianBayesNet, constructor )
sigmas(0) = 1.;
// define nodes and specify in reverse topological sort (i.e. parents last)
ConditionalGaussian x("x",d1,R11,"y",S12, sigmas), y("y",d2,R22, sigmas);
GaussianConditional x("x",d1,R11,"y",S12, sigmas), y("y",d2,R22, sigmas);
// check small example which uses constructor
GaussianBayesNet cbn = createSmallGaussianBayesNet();

View File

@ -1,5 +1,5 @@
/**
* @file testConditionalGaussian.cpp
* @file testGaussianConditional.cpp
* @brief Unit tests for Conditional gaussian
* @author Christian Potthast
**/
@ -15,14 +15,14 @@
#endif //HAVE_BOOST_SERIALIZATION
#include "Matrix.h"
#include "ConditionalGaussian.h"
#include "GaussianConditional.h"
using namespace gtsam;
/* ************************************************************************* */
/* unit test for equals */
/* ************************************************************************* */
TEST( ConditionalGaussian, equals )
TEST( GaussianConditional, equals )
{
// create a conditional gaussian node
Matrix A1(2,2);
@ -44,7 +44,7 @@ TEST( ConditionalGaussian, equals )
Vector d(2);
d(0) = 0.2; d(1) = 0.5;
ConditionalGaussian
GaussianConditional
expected("x",d, R, "x1", A1, "l1", A2, tau),
actual("x",d, R, "x1", A1, "l1", A2, tau);
@ -55,7 +55,7 @@ TEST( ConditionalGaussian, equals )
/* ************************************************************************* */
/* unit test for solve */
/* ************************************************************************* */
TEST( ConditionalGaussian, solve )
TEST( GaussianConditional, solve )
{
//expected solution
Vector expected(2);
@ -76,7 +76,7 @@ TEST( ConditionalGaussian, solve )
Vector tau = ones(2);
ConditionalGaussian cg("x",d, R, "x1", A1, "l1", A2, tau);
GaussianConditional cg("x",d, R, "x1", A1, "l1", A2, tau);
Vector sx1(2);
sx1(0) = 1.0; sx1(1) = 1.0;
@ -98,7 +98,7 @@ TEST( ConditionalGaussian, solve )
/* unit test for serialization */
/* ************************************************************************* */
#ifdef HAVE_BOOST_SERIALIZATION
TEST( ConditionalGaussian, serialize )
TEST( GaussianConditional, serialize )
{
// create a conditional gaussion node
Matrix A1(2,2);
@ -116,7 +116,7 @@ TEST( ConditionalGaussian, serialize )
Vector d(2);
d(0) = 0.2; d(1) = 0.5;
ConditionalGaussian cg("x2", d, R, "x1", A1, "l1", A2);
GaussianConditional cg("x2", d, R, "x1", A1, "l1", A2);
//serialize the CG
std::ostringstream in_archive_stream;
@ -127,7 +127,7 @@ TEST( ConditionalGaussian, serialize )
//deserialize the CGg
std::istringstream out_archive_stream(serialized);
boost::archive::text_iarchive out_archive(out_archive_stream);
ConditionalGaussian output;
GaussianConditional output;
out_archive >> output;
//check for equality

View File

@ -17,7 +17,7 @@ using namespace boost::assign;
#include "Matrix.h"
#include "Ordering.h"
#include "ConditionalGaussian.h"
#include "GaussianConditional.h"
#include "smallExample.h"
using namespace std;
@ -314,7 +314,7 @@ TEST( GaussianFactor, eliminate )
GaussianFactor combined(lfg);
// eliminate the combined factor
ConditionalGaussian::shared_ptr actualCG;
GaussianConditional::shared_ptr actualCG;
GaussianFactor::shared_ptr actualLF;
boost::tie(actualCG,actualLF) = combined.eliminate("x2");
@ -338,7 +338,7 @@ TEST( GaussianFactor, eliminate )
sigmas(1) = 1/sqrt(125.0);
// Check the conditional Gaussian
ConditionalGaussian expectedCG("x2", d,R11,"l1",S12,"x1",S13,sigmas);
GaussianConditional expectedCG("x2", d,R11,"l1",S12,"x1",S13,sigmas);
// the expected linear factor
double sigma = 0.2236;
@ -403,7 +403,7 @@ TEST( GaussianFactor, eliminate2 )
GaussianFactor combined(meas, b2, sigmas);
// eliminate the combined factor
ConditionalGaussian::shared_ptr actualCG;
GaussianConditional::shared_ptr actualCG;
GaussianFactor::shared_ptr actualLF;
boost::tie(actualCG,actualLF) = combined.eliminate("x2");
@ -422,7 +422,7 @@ TEST( GaussianFactor, eliminate2 )
x2Sigmas(0) = 0.0894427;
x2Sigmas(1) = 0.0894427;
ConditionalGaussian expectedCG("x2",d,R11,"l1x1",S12,x2Sigmas);
GaussianConditional expectedCG("x2",d,R11,"l1x1",S12,x2Sigmas);
// the expected linear factor
double sigma = 0.2236;
@ -458,12 +458,12 @@ TEST( GaussianFactor, eliminate_empty )
GaussianFactor f;
// eliminate the empty factor
ConditionalGaussian::shared_ptr actualCG;
GaussianConditional::shared_ptr actualCG;
GaussianFactor::shared_ptr actualLF;
boost::tie(actualCG,actualLF) = f.eliminate("x2");
// expected Conditional Gaussian is just a parent-less node with P(x)=1
ConditionalGaussian expectedCG("x2");
GaussianConditional expectedCG("x2");
// expected remaining factor is still empty :-)
GaussianFactor expectedLF;
@ -612,7 +612,7 @@ TEST( GaussianFactor, size )
}
/* ************************************************************************* */
TEST( GaussianFactor, CONSTRUCTOR_ConditionalGaussian )
TEST( GaussianFactor, CONSTRUCTOR_GaussianConditional )
{
Matrix R11 = Matrix_(2,2,
1.00, 0.00,
@ -628,7 +628,7 @@ TEST( GaussianFactor, CONSTRUCTOR_ConditionalGaussian )
sigmas(0) = 0.29907;
sigmas(1) = 0.29907;
ConditionalGaussian::shared_ptr CG(new ConditionalGaussian("x2",d,R11,"l1x1",S12,sigmas));
GaussianConditional::shared_ptr CG(new GaussianConditional("x2",d,R11,"l1x1",S12,sigmas));
GaussianFactor actualLF(CG);
// actualLF.print();
GaussianFactor expectedLF("x2",R11,"l1x1",S12,d, sigmas(0));
@ -645,7 +645,7 @@ TEST ( GaussianFactor, constraint_eliminate1 )
GaussianFactor lc(key, eye(2), v, 0.0);
// eliminate it
ConditionalGaussian::shared_ptr actualCG;
GaussianConditional::shared_ptr actualCG;
GaussianFactor::shared_ptr actualLF;
boost::tie(actualCG,actualLF) = lc.eliminate("x0");
@ -654,7 +654,7 @@ TEST ( GaussianFactor, constraint_eliminate1 )
// verify conditional Gaussian
Vector sigmas = Vector_(2, 0.0, 0.0);
ConditionalGaussian expCG("x0", v, eye(2), sigmas);
GaussianConditional expCG("x0", v, eye(2), sigmas);
CHECK(assert_equal(expCG, *actualCG));
}
@ -678,7 +678,7 @@ TEST ( GaussianFactor, constraint_eliminate2 )
GaussianFactor lc("x", A1, "y", A2, b, 0.0);
// eliminate x and verify results
ConditionalGaussian::shared_ptr actualCG;
GaussianConditional::shared_ptr actualCG;
GaussianFactor::shared_ptr actualLF;
boost::tie(actualCG, actualLF) = lc.eliminate("x");
@ -694,7 +694,7 @@ TEST ( GaussianFactor, constraint_eliminate2 )
1.0, 2.0,
0.0, 0.0);
Vector d = Vector_(2, 3.0, 0.6666);
ConditionalGaussian expectedCG("x", d, R, "y", S, zero(2));
GaussianConditional expectedCG("x", d, R, "y", S, zero(2));
CHECK(assert_equal(expectedCG, *actualCG, 1e-4));
}
@ -724,7 +724,7 @@ TEST ( GaussianFactor, constraint_eliminate3 )
// eliminate y from original graph
// NOTE: this will throw an exception, as
// the leading matrix is rank deficient
ConditionalGaussian::shared_ptr actualCG;
GaussianConditional::shared_ptr actualCG;
GaussianFactor::shared_ptr actualLF;
try {
boost::tie(actualCG, actualLF) = lc.eliminate("y");

View File

@ -190,12 +190,12 @@ TEST( GaussianFactorGraph, combine_factors_x2 )
TEST( GaussianFactorGraph, eliminateOne_x1 )
{
GaussianFactorGraph fg = createGaussianFactorGraph();
ConditionalGaussian::shared_ptr actual = fg.eliminateOne("x1");
GaussianConditional::shared_ptr actual = fg.eliminateOne("x1");
// create expected Conditional Gaussian
Matrix I = eye(2), R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
Vector d = Vector_(2, -0.133333, -0.0222222), sigma = repeat(2, 1./15);
ConditionalGaussian expected("x1",d,R11,"l1",S12,"x2",S13,sigma);
GaussianConditional expected("x1",d,R11,"l1",S12,"x2",S13,sigma);
CHECK(assert_equal(expected,*actual,tol));
}
@ -205,12 +205,12 @@ TEST( GaussianFactorGraph, eliminateOne_x1 )
TEST( GaussianFactorGraph, eliminateOne_x2 )
{
GaussianFactorGraph fg = createGaussianFactorGraph();
ConditionalGaussian::shared_ptr actual = fg.eliminateOne("x2");
GaussianConditional::shared_ptr actual = fg.eliminateOne("x2");
// create expected Conditional Gaussian
Matrix I = eye(2), R11 = I, S12 = -0.2*I, S13 = -0.8*I;
Vector d = Vector_(2, 0.2, -0.14), sigma = repeat(2, 0.0894427);
ConditionalGaussian expected("x2",d,R11,"l1",S12,"x1",S13,sigma);
GaussianConditional expected("x2",d,R11,"l1",S12,"x1",S13,sigma);
CHECK(assert_equal(expected,*actual,tol));
}
@ -219,12 +219,12 @@ TEST( GaussianFactorGraph, eliminateOne_x2 )
TEST( GaussianFactorGraph, eliminateOne_l1 )
{
GaussianFactorGraph fg = createGaussianFactorGraph();
ConditionalGaussian::shared_ptr actual = fg.eliminateOne("l1");
GaussianConditional::shared_ptr actual = fg.eliminateOne("l1");
// create expected Conditional Gaussian
Matrix I = eye(2), R11 = I, S12 = -0.5*I, S13 = -0.5*I;
Vector d = Vector_(2, -0.1, 0.25), sigma = repeat(2, 0.141421);
ConditionalGaussian expected("l1",d,R11,"x1",S12,"x2",S13,sigma);
GaussianConditional expected("l1",d,R11,"x1",S12,"x2",S13,sigma);
CHECK(assert_equal(expected,*actual,tol));
}
@ -353,7 +353,7 @@ TEST( GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet )
// Base FactorGraph only
FactorGraph<GaussianFactor> fg3(CBN);
GaussianBayesNet CBN3 = gtsam::eliminate<GaussianFactor,ConditionalGaussian>(fg3,ord);
GaussianBayesNet CBN3 = gtsam::eliminate<GaussianFactor,GaussianConditional>(fg3,ord);
CHECK(assert_equal(CBN,CBN3));
}

View File

@ -28,8 +28,8 @@ TEST(GaussianFactorGraph, createSmoother)
Ordering ordering;
GaussianBayesNet bayesNet = fg2.eliminate(ordering);
bayesNet.print("bayesNet");
FactorGraph<GaussianFactor> p_x3 = marginalize<GaussianFactor,ConditionalGaussian>(bayesNet, Ordering("x3"));
FactorGraph<GaussianFactor> p_x1 = marginalize<GaussianFactor,ConditionalGaussian>(bayesNet, Ordering("x1"));
FactorGraph<GaussianFactor> p_x3 = marginalize<GaussianFactor,GaussianConditional>(bayesNet, Ordering("x3"));
FactorGraph<GaussianFactor> p_x1 = marginalize<GaussianFactor,GaussianConditional>(bayesNet, Ordering("x1"));
CHECK(assert_equal(p_x1,p_x3)); // should be the same because of symmetry
}
@ -39,10 +39,10 @@ TEST( Inference, marginals )
// create and marginalize a small Bayes net on "x"
GaussianBayesNet cbn = createSmallGaussianBayesNet();
Ordering keys("x");
FactorGraph<GaussianFactor> fg = marginalize<GaussianFactor, ConditionalGaussian>(cbn,keys);
FactorGraph<GaussianFactor> fg = marginalize<GaussianFactor, GaussianConditional>(cbn,keys);
// turn into Bayes net to test easily
BayesNet<ConditionalGaussian> actual = eliminate<GaussianFactor,ConditionalGaussian>(fg,keys);
BayesNet<GaussianConditional> actual = eliminate<GaussianFactor,GaussianConditional>(fg,keys);
// expected is just scalar Gaussian on x
GaussianBayesNet expected = scalarGaussian("x",4,sqrt(2));

View File

@ -0,0 +1,16 @@
/*
* @file testNonlinearEquality.cpp
* @author Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include "NonlinearEquality.h"
TEST ( NonlinearEquality, construction ) {
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */

View File

@ -69,7 +69,7 @@ int main()
GaussianFactor combined("x2", Ax2, "l1", Al1, "x1", Ax1, b2);
long timeLog = clock();
int n = 1000000;
ConditionalGaussian::shared_ptr conditional;
GaussianConditional::shared_ptr conditional;
GaussianFactor::shared_ptr factor;
for(int i = 0; i < n; i++)