Merge pull request #1762 from borglab/fix/ahrs
Correctly deal with sensor rotation in AHRSrelease/4.3a0
commit
c6bd3f8e32
|
@ -19,3 +19,4 @@ CMakeLists.txt.user*
|
|||
xcode/
|
||||
/Dockerfile
|
||||
/python/gtsam/notebooks/.ipynb_checkpoints/ellipses-checkpoint.ipynb
|
||||
.cache/
|
||||
|
|
|
@ -49,13 +49,14 @@ void PreintegratedAhrsMeasurements::resetIntegration() {
|
|||
//------------------------------------------------------------------------------
|
||||
void PreintegratedAhrsMeasurements::integrateMeasurement(
|
||||
const Vector3& measuredOmega, double deltaT) {
|
||||
Matrix3 Fr;
|
||||
PreintegratedRotation::integrateGyroMeasurement(measuredOmega, biasHat_,
|
||||
deltaT, &Fr);
|
||||
|
||||
Matrix3 D_incrR_integratedOmega, Fr;
|
||||
PreintegratedRotation::integrateMeasurement(measuredOmega,
|
||||
biasHat_, deltaT, &D_incrR_integratedOmega, &Fr);
|
||||
|
||||
// first order uncertainty propagation
|
||||
// the deltaT allows to pass from continuous time noise to discrete time noise
|
||||
// First order uncertainty propagation
|
||||
// The deltaT allows to pass from continuous time noise to discrete time
|
||||
// noise. Comparing with the IMUFactor.cpp implementation, the latter is an
|
||||
// approximation for C * (wCov / dt) * C.transpose(), with C \approx I * dt.
|
||||
preintMeasCov_ = Fr * preintMeasCov_ * Fr.transpose() + p().gyroscopeCovariance * deltaT;
|
||||
}
|
||||
|
||||
|
|
|
@ -68,39 +68,40 @@ bool PreintegratedRotation::equals(const PreintegratedRotation& other,
|
|||
&& equal_with_abs_tol(delRdelBiasOmega_, other.delRdelBiasOmega_, tol);
|
||||
}
|
||||
|
||||
Rot3 PreintegratedRotation::incrementalRotation(const Vector3& measuredOmega,
|
||||
const Vector3& biasHat, double deltaT,
|
||||
OptionalJacobian<3, 3> D_incrR_integratedOmega) const {
|
||||
|
||||
namespace internal {
|
||||
Rot3 IncrementalRotation::operator()(
|
||||
const Vector3& bias, OptionalJacobian<3, 3> H_bias) const {
|
||||
// First we compensate the measurements for the bias
|
||||
Vector3 correctedOmega = measuredOmega - biasHat;
|
||||
Vector3 correctedOmega = measuredOmega - bias;
|
||||
|
||||
// Then compensate for sensor-body displacement: we express the quantities
|
||||
// (originally in the IMU frame) into the body frame
|
||||
if (p_->body_P_sensor) {
|
||||
Matrix3 body_R_sensor = p_->body_P_sensor->rotation().matrix();
|
||||
// (originally in the IMU frame) into the body frame. If Jacobian is
|
||||
// requested, the rotation matrix is obtained as `rotate` Jacobian.
|
||||
Matrix3 body_R_sensor;
|
||||
if (body_P_sensor) {
|
||||
// rotation rate vector in the body frame
|
||||
correctedOmega = body_R_sensor * correctedOmega;
|
||||
correctedOmega = body_P_sensor->rotation().rotate(
|
||||
correctedOmega, {}, H_bias ? &body_R_sensor : nullptr);
|
||||
}
|
||||
|
||||
// rotation vector describing rotation increment computed from the
|
||||
// current rotation rate measurement
|
||||
const Vector3 integratedOmega = correctedOmega * deltaT;
|
||||
return Rot3::Expmap(integratedOmega, D_incrR_integratedOmega); // expensive !!
|
||||
}
|
||||
|
||||
void PreintegratedRotation::integrateMeasurement(const Vector3& measuredOmega,
|
||||
const Vector3& biasHat, double deltaT,
|
||||
OptionalJacobian<3, 3> optional_D_incrR_integratedOmega,
|
||||
OptionalJacobian<3, 3> F) {
|
||||
Matrix3 D_incrR_integratedOmega;
|
||||
const Rot3 incrR = incrementalRotation(measuredOmega, biasHat, deltaT,
|
||||
D_incrR_integratedOmega);
|
||||
|
||||
// If asked, pass first derivative as well
|
||||
if (optional_D_incrR_integratedOmega) {
|
||||
*optional_D_incrR_integratedOmega << D_incrR_integratedOmega;
|
||||
Rot3 incrR = Rot3::Expmap(integratedOmega, H_bias); // expensive !!
|
||||
if (H_bias) {
|
||||
*H_bias *= -deltaT; // Correct so accurately reflects bias derivative
|
||||
if (body_P_sensor) *H_bias *= body_R_sensor;
|
||||
}
|
||||
return incrR;
|
||||
}
|
||||
} // namespace internal
|
||||
|
||||
void PreintegratedRotation::integrateGyroMeasurement(
|
||||
const Vector3& measuredOmega, const Vector3& biasHat, double deltaT,
|
||||
OptionalJacobian<3, 3> F) {
|
||||
Matrix3 H_bias;
|
||||
internal::IncrementalRotation f{measuredOmega, deltaT, p_->body_P_sensor};
|
||||
const Rot3 incrR = f(biasHat, H_bias);
|
||||
|
||||
// Update deltaTij and rotation
|
||||
deltaTij_ += deltaT;
|
||||
|
@ -108,10 +109,26 @@ void PreintegratedRotation::integrateMeasurement(const Vector3& measuredOmega,
|
|||
|
||||
// Update Jacobian
|
||||
const Matrix3 incrRt = incrR.transpose();
|
||||
delRdelBiasOmega_ = incrRt * delRdelBiasOmega_
|
||||
- D_incrR_integratedOmega * deltaT;
|
||||
delRdelBiasOmega_ = incrRt * delRdelBiasOmega_ + H_bias;
|
||||
}
|
||||
|
||||
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V43
|
||||
void PreintegratedRotation::integrateMeasurement(
|
||||
const Vector3& measuredOmega, const Vector3& biasHat, double deltaT,
|
||||
OptionalJacobian<3, 3> optional_D_incrR_integratedOmega,
|
||||
OptionalJacobian<3, 3> F) {
|
||||
integrateGyroMeasurement(measuredOmega, biasHat, deltaT, F);
|
||||
|
||||
// If asked, pass obsolete Jacobians as well
|
||||
if (optional_D_incrR_integratedOmega) {
|
||||
Matrix3 H_bias;
|
||||
internal::IncrementalRotation f{measuredOmega, deltaT, p_->body_P_sensor};
|
||||
const Rot3 incrR = f(biasHat, H_bias);
|
||||
*optional_D_incrR_integratedOmega << H_bias / -deltaT;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
Rot3 PreintegratedRotation::biascorrectedDeltaRij(const Vector3& biasOmegaIncr,
|
||||
OptionalJacobian<3, 3> H) const {
|
||||
const Vector3 biasInducedOmega = delRdelBiasOmega_ * biasOmegaIncr;
|
||||
|
|
|
@ -21,12 +21,37 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/std_optional_serialization.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include "gtsam/dllexport.h"
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
namespace internal {
|
||||
/**
|
||||
* @brief Function object for incremental rotation.
|
||||
* @param measuredOmega The measured angular velocity (as given by the sensor)
|
||||
* @param deltaT The time interval over which the rotation is integrated.
|
||||
* @param body_P_sensor Optional transform between body and IMU.
|
||||
*/
|
||||
struct GTSAM_EXPORT IncrementalRotation {
|
||||
const Vector3& measuredOmega;
|
||||
const double deltaT;
|
||||
const std::optional<Pose3>& body_P_sensor;
|
||||
|
||||
/**
|
||||
* @brief Integrate angular velocity, but corrected by bias.
|
||||
* @param bias The bias estimate
|
||||
* @param H_bias Jacobian of the rotation w.r.t. bias.
|
||||
* @return The incremental rotation
|
||||
*/
|
||||
Rot3 operator()(const Vector3& bias,
|
||||
OptionalJacobian<3, 3> H_bias = {}) const;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
/// Parameters for pre-integration:
|
||||
/// Usage: Create just a single Params and pass a shared pointer to the constructor
|
||||
struct GTSAM_EXPORT PreintegratedRotationParams {
|
||||
|
@ -65,7 +90,6 @@ struct GTSAM_EXPORT PreintegratedRotationParams {
|
|||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
|
||||
namespace bs = ::boost::serialization;
|
||||
ar & BOOST_SERIALIZATION_NVP(gyroscopeCovariance);
|
||||
ar & BOOST_SERIALIZATION_NVP(body_P_sensor);
|
||||
|
||||
|
@ -136,18 +160,10 @@ class GTSAM_EXPORT PreintegratedRotation {
|
|||
|
||||
/// @name Access instance variables
|
||||
/// @{
|
||||
const std::shared_ptr<Params>& params() const {
|
||||
return p_;
|
||||
}
|
||||
const double& deltaTij() const {
|
||||
return deltaTij_;
|
||||
}
|
||||
const Rot3& deltaRij() const {
|
||||
return deltaRij_;
|
||||
}
|
||||
const Matrix3& delRdelBiasOmega() const {
|
||||
return delRdelBiasOmega_;
|
||||
}
|
||||
const std::shared_ptr<Params>& params() const { return p_; }
|
||||
const double& deltaTij() const { return deltaTij_; }
|
||||
const Rot3& deltaRij() const { return deltaRij_; }
|
||||
const Matrix3& delRdelBiasOmega() const { return delRdelBiasOmega_; }
|
||||
/// @}
|
||||
|
||||
/// @name Testable
|
||||
|
@ -159,19 +175,24 @@ class GTSAM_EXPORT PreintegratedRotation {
|
|||
/// @name Main functionality
|
||||
/// @{
|
||||
|
||||
/// Take the gyro measurement, correct it using the (constant) bias estimate
|
||||
/// and possibly the sensor pose, and then integrate it forward in time to yield
|
||||
/// an incremental rotation.
|
||||
Rot3 incrementalRotation(const Vector3& measuredOmega, const Vector3& biasHat, double deltaT,
|
||||
OptionalJacobian<3, 3> D_incrR_integratedOmega) const;
|
||||
|
||||
/// Calculate an incremental rotation given the gyro measurement and a time interval,
|
||||
/// and update both deltaTij_ and deltaRij_.
|
||||
void integrateMeasurement(const Vector3& measuredOmega, const Vector3& biasHat, double deltaT,
|
||||
OptionalJacobian<3, 3> D_incrR_integratedOmega = {},
|
||||
/**
|
||||
* @brief Calculate an incremental rotation given the gyro measurement and a
|
||||
* time interval, and update both deltaTij_ and deltaRij_.
|
||||
* @param measuredOmega The measured angular velocity (as given by the sensor)
|
||||
* @param bias The biasHat estimate
|
||||
* @param deltaT The time interval
|
||||
* @param F optional Jacobian of internal compose, used in AhrsFactor.
|
||||
*/
|
||||
void integrateGyroMeasurement(const Vector3& measuredOmega,
|
||||
const Vector3& biasHat, double deltaT,
|
||||
OptionalJacobian<3, 3> F = {});
|
||||
|
||||
/// Return a bias corrected version of the integrated rotation, with optional Jacobian
|
||||
/**
|
||||
* @brief Return a bias corrected version of the integrated rotation.
|
||||
* @param biasOmegaIncr An increment with respect to biasHat used above.
|
||||
* @param H optional Jacobian of the correction w.r.t. the bias increment.
|
||||
* @note The *key* functionality of this class used in optimizing the bias.
|
||||
*/
|
||||
Rot3 biascorrectedDeltaRij(const Vector3& biasOmegaIncr,
|
||||
OptionalJacobian<3, 3> H = {}) const;
|
||||
|
||||
|
@ -180,6 +201,31 @@ class GTSAM_EXPORT PreintegratedRotation {
|
|||
|
||||
/// @}
|
||||
|
||||
/// @name Deprecated API
|
||||
/// @{
|
||||
|
||||
#ifdef GTSAM_ALLOW_DEPRECATED_SINCE_V43
|
||||
/// @deprecated: use IncrementalRotation functor with sane Jacobian
|
||||
inline Rot3 GTSAM_DEPRECATED incrementalRotation(
|
||||
const Vector3& measuredOmega, const Vector3& bias, double deltaT,
|
||||
OptionalJacobian<3, 3> D_incrR_integratedOmega) const {
|
||||
internal::IncrementalRotation f{measuredOmega, deltaT, p_->body_P_sensor};
|
||||
Rot3 incrR = f(bias, D_incrR_integratedOmega);
|
||||
// Backwards compatible "weird" Jacobian, no longer used.
|
||||
if (D_incrR_integratedOmega) *D_incrR_integratedOmega /= -deltaT;
|
||||
return incrR;
|
||||
}
|
||||
|
||||
/// @deprecated: use integrateGyroMeasurement from now on
|
||||
/// @note this returned hard-to-understand Jacobian D_incrR_integratedOmega.
|
||||
void GTSAM_DEPRECATED integrateMeasurement(
|
||||
const Vector3& measuredOmega, const Vector3& biasHat, double deltaT,
|
||||
OptionalJacobian<3, 3> D_incrR_integratedOmega, OptionalJacobian<3, 3> F);
|
||||
|
||||
#endif
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
|
||||
/** Serialization function */
|
||||
|
|
|
@ -18,47 +18,44 @@
|
|||
* @author Varun Agrawal
|
||||
*/
|
||||
|
||||
#include <gtsam/navigation/AHRSFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/base/debug.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/navigation/AHRSFactor.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/Marginals.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/factorTesting.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <list>
|
||||
#include <memory>
|
||||
#include "gtsam/nonlinear/LevenbergMarquardtParams.h"
|
||||
|
||||
using namespace std::placeholders;
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// Convenience for named keys
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::V;
|
||||
using symbol_shorthand::B;
|
||||
using symbol_shorthand::R;
|
||||
|
||||
Vector3 kZeroOmegaCoriolis(0,0,0);
|
||||
Vector3 kZeroOmegaCoriolis(0, 0, 0);
|
||||
|
||||
// Define covariance matrices
|
||||
double accNoiseVar = 0.01;
|
||||
const Matrix3 kMeasuredAccCovariance = accNoiseVar * I_3x3;
|
||||
double gyroNoiseVar = 0.01;
|
||||
const Matrix3 kMeasuredOmegaCovariance = gyroNoiseVar * I_3x3;
|
||||
|
||||
//******************************************************************************
|
||||
namespace {
|
||||
Vector callEvaluateError(const AHRSFactor& factor, const Rot3 rot_i,
|
||||
const Rot3 rot_j, const Vector3& bias) {
|
||||
return factor.evaluateError(rot_i, rot_j, bias);
|
||||
}
|
||||
|
||||
Rot3 evaluateRotationError(const AHRSFactor& factor, const Rot3 rot_i,
|
||||
const Rot3 rot_j, const Vector3& bias) {
|
||||
return Rot3::Expmap(factor.evaluateError(rot_i, rot_j, bias).tail(3));
|
||||
}
|
||||
|
||||
PreintegratedAhrsMeasurements evaluatePreintegratedMeasurements(
|
||||
const Vector3& bias, const list<Vector3>& measuredOmegas,
|
||||
const list<double>& deltaTs,
|
||||
const Vector3& initialRotationRate = Vector3::Zero()) {
|
||||
PreintegratedAhrsMeasurements result(bias, I_3x3);
|
||||
PreintegratedAhrsMeasurements integrateMeasurements(
|
||||
const Vector3& biasHat, const list<Vector3>& measuredOmegas,
|
||||
const list<double>& deltaTs) {
|
||||
PreintegratedAhrsMeasurements result(biasHat, I_3x3);
|
||||
|
||||
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
|
||||
list<double>::const_iterator itDeltaT = deltaTs.begin();
|
||||
|
@ -68,79 +65,59 @@ PreintegratedAhrsMeasurements evaluatePreintegratedMeasurements(
|
|||
|
||||
return result;
|
||||
}
|
||||
|
||||
Rot3 evaluatePreintegratedMeasurementsRotation(
|
||||
const Vector3& bias, const list<Vector3>& measuredOmegas,
|
||||
const list<double>& deltaTs,
|
||||
const Vector3& initialRotationRate = Vector3::Zero()) {
|
||||
return Rot3(
|
||||
evaluatePreintegratedMeasurements(bias, measuredOmegas, deltaTs,
|
||||
initialRotationRate).deltaRij());
|
||||
}
|
||||
|
||||
Rot3 evaluateRotation(const Vector3 measuredOmega, const Vector3 biasOmega,
|
||||
const double deltaT) {
|
||||
return Rot3::Expmap((measuredOmega - biasOmega) * deltaT);
|
||||
}
|
||||
|
||||
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta) {
|
||||
return Rot3::Logmap(Rot3::Expmap(thetahat).compose(Rot3::Expmap(deltatheta)));
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
//******************************************************************************
|
||||
TEST( AHRSFactor, PreintegratedAhrsMeasurements ) {
|
||||
TEST(AHRSFactor, PreintegratedAhrsMeasurements) {
|
||||
// Linearization point
|
||||
Vector3 bias(0,0,0); ///< Current estimate of angular rate bias
|
||||
Vector3 biasHat(0, 0, 0); ///< Current estimate of angular rate bias
|
||||
|
||||
// Measurements
|
||||
Vector3 measuredOmega(M_PI / 100.0, 0.0, 0.0);
|
||||
double deltaT = 0.5;
|
||||
|
||||
// Expected preintegrated values
|
||||
Rot3 expectedDeltaR1 = Rot3::RzRyRx(0.5 * M_PI / 100.0, 0.0, 0.0);
|
||||
double expectedDeltaT1(0.5);
|
||||
Rot3 expectedDeltaR1 = Rot3::Roll(0.5 * M_PI / 100.0);
|
||||
|
||||
// Actual preintegrated values
|
||||
PreintegratedAhrsMeasurements actual1(bias, Z_3x3);
|
||||
PreintegratedAhrsMeasurements actual1(biasHat, kMeasuredOmegaCovariance);
|
||||
actual1.integrateMeasurement(measuredOmega, deltaT);
|
||||
|
||||
EXPECT(assert_equal(expectedDeltaR1, Rot3(actual1.deltaRij()), 1e-6));
|
||||
DOUBLES_EQUAL(expectedDeltaT1, actual1.deltaTij(), 1e-6);
|
||||
DOUBLES_EQUAL(deltaT, actual1.deltaTij(), 1e-6);
|
||||
|
||||
// Check the covariance
|
||||
Matrix3 expectedMeasCov = kMeasuredOmegaCovariance * deltaT;
|
||||
EXPECT(assert_equal(expectedMeasCov, actual1.preintMeasCov(), 1e-6));
|
||||
|
||||
// Integrate again
|
||||
Rot3 expectedDeltaR2 = Rot3::RzRyRx(2.0 * 0.5 * M_PI / 100.0, 0.0, 0.0);
|
||||
double expectedDeltaT2(1);
|
||||
Rot3 expectedDeltaR2 = Rot3::Roll(2.0 * 0.5 * M_PI / 100.0);
|
||||
|
||||
// Actual preintegrated values
|
||||
PreintegratedAhrsMeasurements actual2 = actual1;
|
||||
actual2.integrateMeasurement(measuredOmega, deltaT);
|
||||
|
||||
EXPECT(assert_equal(expectedDeltaR2, Rot3(actual2.deltaRij()), 1e-6));
|
||||
DOUBLES_EQUAL(expectedDeltaT2, actual2.deltaTij(), 1e-6);
|
||||
DOUBLES_EQUAL(deltaT * 2, actual2.deltaTij(), 1e-6);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST( AHRSFactor, PreintegratedAhrsMeasurementsConstructor ) {
|
||||
Matrix3 gyroscopeCovariance = Matrix3::Ones()*0.4;
|
||||
TEST(AHRSFactor, PreintegratedAhrsMeasurementsConstructor) {
|
||||
Matrix3 gyroscopeCovariance = I_3x3 * 0.4;
|
||||
Vector3 omegaCoriolis(0.1, 0.5, 0.9);
|
||||
PreintegratedRotationParams params(gyroscopeCovariance, omegaCoriolis);
|
||||
Vector3 bias(1.0,2.0,3.0); ///< Current estimate of angular rate bias
|
||||
Vector3 bias(1.0, 2.0, 3.0); ///< Current estimate of angular rate bias
|
||||
Rot3 deltaRij(Rot3::RzRyRx(M_PI / 12.0, M_PI / 6.0, M_PI / 4.0));
|
||||
double deltaTij = 0.02;
|
||||
Matrix3 delRdelBiasOmega = Matrix3::Ones()*0.5;
|
||||
Matrix3 preintMeasCov = Matrix3::Ones()*0.2;
|
||||
Matrix3 delRdelBiasOmega = I_3x3 * 0.5;
|
||||
Matrix3 preintMeasCov = I_3x3 * 0.2;
|
||||
PreintegratedAhrsMeasurements actualPim(
|
||||
std::make_shared<PreintegratedRotationParams>(params),
|
||||
bias,
|
||||
deltaTij,
|
||||
deltaRij,
|
||||
delRdelBiasOmega,
|
||||
preintMeasCov);
|
||||
std::make_shared<PreintegratedRotationParams>(params), bias, deltaTij,
|
||||
deltaRij, delRdelBiasOmega, preintMeasCov);
|
||||
EXPECT(assert_equal(gyroscopeCovariance,
|
||||
actualPim.p().getGyroscopeCovariance(), 1e-6));
|
||||
EXPECT(assert_equal(omegaCoriolis,
|
||||
*(actualPim.p().getOmegaCoriolis()), 1e-6));
|
||||
EXPECT(
|
||||
assert_equal(omegaCoriolis, *(actualPim.p().getOmegaCoriolis()), 1e-6));
|
||||
EXPECT(assert_equal(bias, actualPim.biasHat(), 1e-6));
|
||||
DOUBLES_EQUAL(deltaTij, actualPim.deltaTij(), 1e-6);
|
||||
EXPECT(assert_equal(deltaRij, Rot3(actualPim.deltaRij()), 1e-6));
|
||||
|
@ -151,196 +128,146 @@ TEST( AHRSFactor, PreintegratedAhrsMeasurementsConstructor ) {
|
|||
/* ************************************************************************* */
|
||||
TEST(AHRSFactor, Error) {
|
||||
// Linearization point
|
||||
Vector3 bias(0.,0.,0.); // Bias
|
||||
Rot3 x1(Rot3::RzRyRx(M_PI / 12.0, M_PI / 6.0, M_PI / 4.0));
|
||||
Rot3 x2(Rot3::RzRyRx(M_PI / 12.0 + M_PI / 100.0, M_PI / 6.0, M_PI / 4.0));
|
||||
Vector3 bias(0., 0., 0.); // Bias
|
||||
Rot3 Ri(Rot3::RzRyRx(M_PI / 12.0, M_PI / 6.0, M_PI / 4.0));
|
||||
Rot3 Rj(Rot3::RzRyRx(M_PI / 12.0 + M_PI / 100.0, M_PI / 6.0, M_PI / 4.0));
|
||||
|
||||
// Measurements
|
||||
Vector3 measuredOmega;
|
||||
measuredOmega << M_PI / 100, 0, 0;
|
||||
Vector3 measuredOmega(M_PI / 100, 0, 0);
|
||||
double deltaT = 1.0;
|
||||
PreintegratedAhrsMeasurements pim(bias, Z_3x3);
|
||||
PreintegratedAhrsMeasurements pim(bias, kMeasuredOmegaCovariance);
|
||||
pim.integrateMeasurement(measuredOmega, deltaT);
|
||||
|
||||
// Create factor
|
||||
AHRSFactor factor(X(1), X(2), B(1), pim, kZeroOmegaCoriolis, {});
|
||||
AHRSFactor factor(R(1), R(2), B(1), pim, kZeroOmegaCoriolis, {});
|
||||
|
||||
Vector3 errorActual = factor.evaluateError(x1, x2, bias);
|
||||
|
||||
// Expected error
|
||||
Vector3 errorExpected(3);
|
||||
errorExpected << 0, 0, 0;
|
||||
// Check value
|
||||
Vector3 errorActual = factor.evaluateError(Ri, Rj, bias);
|
||||
Vector3 errorExpected(0, 0, 0);
|
||||
EXPECT(assert_equal(Vector(errorExpected), Vector(errorActual), 1e-6));
|
||||
|
||||
// Expected Jacobians
|
||||
Matrix H1e = numericalDerivative11<Vector3, Rot3>(
|
||||
std::bind(&callEvaluateError, factor, std::placeholders::_1, x2, bias), x1);
|
||||
Matrix H2e = numericalDerivative11<Vector3, Rot3>(
|
||||
std::bind(&callEvaluateError, factor, x1, std::placeholders::_1, bias), x2);
|
||||
Matrix H3e = numericalDerivative11<Vector3, Vector3>(
|
||||
std::bind(&callEvaluateError, factor, x1, x2, std::placeholders::_1), bias);
|
||||
|
||||
// Check rotation Jacobians
|
||||
Matrix RH1e = numericalDerivative11<Rot3, Rot3>(
|
||||
std::bind(&evaluateRotationError, factor, std::placeholders::_1, x2, bias), x1);
|
||||
Matrix RH2e = numericalDerivative11<Rot3, Rot3>(
|
||||
std::bind(&evaluateRotationError, factor, x1, std::placeholders::_1, bias), x2);
|
||||
|
||||
// Actual Jacobians
|
||||
Matrix H1a, H2a, H3a;
|
||||
(void) factor.evaluateError(x1, x2, bias, H1a, H2a, H3a);
|
||||
|
||||
// rotations
|
||||
EXPECT(assert_equal(RH1e, H1a, 1e-5));
|
||||
// 1e-5 needs to be added only when using quaternions for rotations
|
||||
|
||||
EXPECT(assert_equal(H2e, H2a, 1e-5));
|
||||
|
||||
// rotations
|
||||
EXPECT(assert_equal(RH2e, H2a, 1e-5));
|
||||
// 1e-5 needs to be added only when using quaternions for rotations
|
||||
|
||||
EXPECT(assert_equal(H3e, H3a, 1e-5));
|
||||
// 1e-5 needs to be added only when using quaternions for rotations
|
||||
// Check Derivatives
|
||||
Values values;
|
||||
values.insert(R(1), Ri);
|
||||
values.insert(R(2), Rj);
|
||||
values.insert(B(1), bias);
|
||||
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-6);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(AHRSFactor, ErrorWithBiases) {
|
||||
// Linearization point
|
||||
|
||||
Vector3 bias(0, 0, 0.3);
|
||||
Rot3 x1(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)));
|
||||
Rot3 x2(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0 + M_PI / 10.0)));
|
||||
Rot3 Ri(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)));
|
||||
Rot3 Rj(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0 + M_PI / 10.0)));
|
||||
|
||||
// Measurements
|
||||
Vector3 measuredOmega;
|
||||
measuredOmega << 0, 0, M_PI / 10.0 + 0.3;
|
||||
Vector3 measuredOmega(0, 0, M_PI / 10.0 + 0.3);
|
||||
double deltaT = 1.0;
|
||||
|
||||
PreintegratedAhrsMeasurements pim(Vector3(0,0,0),
|
||||
Z_3x3);
|
||||
PreintegratedAhrsMeasurements pim(Vector3(0, 0, 0), kMeasuredOmegaCovariance);
|
||||
pim.integrateMeasurement(measuredOmega, deltaT);
|
||||
|
||||
// Create factor
|
||||
AHRSFactor factor(X(1), X(2), B(1), pim, kZeroOmegaCoriolis);
|
||||
AHRSFactor factor(R(1), R(2), B(1), pim, kZeroOmegaCoriolis);
|
||||
|
||||
Vector errorActual = factor.evaluateError(x1, x2, bias);
|
||||
|
||||
// Expected error
|
||||
Vector errorExpected(3);
|
||||
errorExpected << 0, 0, 0;
|
||||
// Check value
|
||||
Vector3 errorExpected(0, 0, 0);
|
||||
Vector3 errorActual = factor.evaluateError(Ri, Rj, bias);
|
||||
EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
|
||||
|
||||
// Expected Jacobians
|
||||
Matrix H1e = numericalDerivative11<Vector, Rot3>(
|
||||
std::bind(&callEvaluateError, factor, std::placeholders::_1, x2, bias), x1);
|
||||
Matrix H2e = numericalDerivative11<Vector, Rot3>(
|
||||
std::bind(&callEvaluateError, factor, x1, std::placeholders::_1, bias), x2);
|
||||
Matrix H3e = numericalDerivative11<Vector, Vector3>(
|
||||
std::bind(&callEvaluateError, factor, x1, x2, std::placeholders::_1), bias);
|
||||
|
||||
// Check rotation Jacobians
|
||||
Matrix RH1e = numericalDerivative11<Rot3, Rot3>(
|
||||
std::bind(&evaluateRotationError, factor, std::placeholders::_1, x2, bias), x1);
|
||||
Matrix RH2e = numericalDerivative11<Rot3, Rot3>(
|
||||
std::bind(&evaluateRotationError, factor, x1, std::placeholders::_1, bias), x2);
|
||||
Matrix RH3e = numericalDerivative11<Rot3, Vector3>(
|
||||
std::bind(&evaluateRotationError, factor, x1, x2, std::placeholders::_1), bias);
|
||||
|
||||
// Actual Jacobians
|
||||
Matrix H1a, H2a, H3a;
|
||||
(void) factor.evaluateError(x1, x2, bias, H1a, H2a, H3a);
|
||||
|
||||
EXPECT(assert_equal(H1e, H1a));
|
||||
EXPECT(assert_equal(H2e, H2a));
|
||||
EXPECT(assert_equal(H3e, H3a));
|
||||
// Check Derivatives
|
||||
Values values;
|
||||
values.insert(R(1), Ri);
|
||||
values.insert(R(2), Rj);
|
||||
values.insert(B(1), bias);
|
||||
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-6);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST( AHRSFactor, PartialDerivativeExpmap ) {
|
||||
TEST(AHRSFactor, PartialDerivativeExpmap) {
|
||||
// Linearization point
|
||||
Vector3 biasOmega(0,0,0);
|
||||
Vector3 biasOmega(0, 0, 0);
|
||||
|
||||
// Measurements
|
||||
Vector3 measuredOmega;
|
||||
measuredOmega << 0.1, 0, 0;
|
||||
Vector3 measuredOmega(0.1, 0, 0);
|
||||
double deltaT = 0.5;
|
||||
|
||||
auto f = [&](const Vector3& biasOmega) {
|
||||
return Rot3::Expmap((measuredOmega - biasOmega) * deltaT);
|
||||
};
|
||||
|
||||
// Compute numerical derivatives
|
||||
Matrix expectedDelRdelBiasOmega = numericalDerivative11<Rot3, Vector3>(
|
||||
std::bind(&evaluateRotation, measuredOmega, std::placeholders::_1, deltaT), biasOmega);
|
||||
Matrix expectedH = numericalDerivative11<Rot3, Vector3>(f, biasOmega);
|
||||
|
||||
const Matrix3 Jr = Rot3::ExpmapDerivative(
|
||||
(measuredOmega - biasOmega) * deltaT);
|
||||
const Matrix3 Jr =
|
||||
Rot3::ExpmapDerivative((measuredOmega - biasOmega) * deltaT);
|
||||
|
||||
Matrix3 actualdelRdelBiasOmega = -Jr * deltaT; // the delta bias appears with the minus sign
|
||||
Matrix3 actualH = -Jr * deltaT; // the delta bias appears with the minus sign
|
||||
|
||||
// Compare Jacobians
|
||||
EXPECT(assert_equal(expectedDelRdelBiasOmega, actualdelRdelBiasOmega, 1e-3));
|
||||
EXPECT(assert_equal(expectedH, actualH, 1e-3));
|
||||
// 1e-3 needs to be added only when using quaternions for rotations
|
||||
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST( AHRSFactor, PartialDerivativeLogmap ) {
|
||||
TEST(AHRSFactor, PartialDerivativeLogmap) {
|
||||
// Linearization point
|
||||
Vector3 thetahat;
|
||||
thetahat << 0.1, 0.1, 0; ///< Current estimate of rotation rate bias
|
||||
Vector3 thetaHat(0.1, 0.1, 0); ///< Current estimate of rotation rate bias
|
||||
|
||||
// Measurements
|
||||
Vector3 deltatheta;
|
||||
deltatheta << 0, 0, 0;
|
||||
auto f = [thetaHat](const Vector3 deltaTheta) {
|
||||
return Rot3::Logmap(
|
||||
Rot3::Expmap(thetaHat).compose(Rot3::Expmap(deltaTheta)));
|
||||
};
|
||||
|
||||
// Compute numerical derivatives
|
||||
Matrix expectedDelFdeltheta = numericalDerivative11<Vector3, Vector3>(
|
||||
std::bind(&evaluateLogRotation, thetahat, std::placeholders::_1), deltatheta);
|
||||
Vector3 deltaTheta(0, 0, 0);
|
||||
Matrix expectedH = numericalDerivative11<Vector3, Vector3>(f, deltaTheta);
|
||||
|
||||
const Vector3 x = thetahat; // parametrization of so(3)
|
||||
const Vector3 x = thetaHat; // parametrization of so(3)
|
||||
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
|
||||
double normx = x.norm();
|
||||
const Matrix3 actualDelFdeltheta = I_3x3 + 0.5 * X
|
||||
+ (1 / (normx * normx) - (1 + cos(normx)) / (2 * normx * sin(normx))) * X
|
||||
* X;
|
||||
double norm = x.norm();
|
||||
const Matrix3 actualH =
|
||||
I_3x3 + 0.5 * X +
|
||||
(1 / (norm * norm) - (1 + cos(norm)) / (2 * norm * sin(norm))) * X * X;
|
||||
|
||||
// Compare Jacobians
|
||||
EXPECT(assert_equal(expectedDelFdeltheta, actualDelFdeltheta));
|
||||
|
||||
EXPECT(assert_equal(expectedH, actualH));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST( AHRSFactor, fistOrderExponential ) {
|
||||
TEST(AHRSFactor, fistOrderExponential) {
|
||||
// Linearization point
|
||||
Vector3 biasOmega(0,0,0);
|
||||
Vector3 biasOmega(0, 0, 0);
|
||||
|
||||
// Measurements
|
||||
Vector3 measuredOmega;
|
||||
measuredOmega << 0.1, 0, 0;
|
||||
Vector3 measuredOmega(0.1, 0, 0);
|
||||
double deltaT = 1.0;
|
||||
|
||||
// change w.r.t. linearization point
|
||||
double alpha = 0.0;
|
||||
Vector3 deltabiasOmega;
|
||||
deltabiasOmega << alpha, alpha, alpha;
|
||||
Vector3 deltaBiasOmega(alpha, alpha, alpha);
|
||||
|
||||
const Matrix3 Jr = Rot3::ExpmapDerivative(
|
||||
(measuredOmega - biasOmega) * deltaT);
|
||||
const Matrix3 Jr =
|
||||
Rot3::ExpmapDerivative((measuredOmega - biasOmega) * deltaT);
|
||||
|
||||
Matrix3 delRdelBiasOmega = -Jr * deltaT; // the delta bias appears with the minus sign
|
||||
Matrix3 delRdelBiasOmega =
|
||||
-Jr * deltaT; // the delta bias appears with the minus sign
|
||||
|
||||
const Matrix expectedRot = Rot3::Expmap(
|
||||
(measuredOmega - biasOmega - deltabiasOmega) * deltaT).matrix();
|
||||
const Matrix expectedRot =
|
||||
Rot3::Expmap((measuredOmega - biasOmega - deltaBiasOmega) * deltaT)
|
||||
.matrix();
|
||||
|
||||
const Matrix3 hatRot =
|
||||
Rot3::Expmap((measuredOmega - biasOmega) * deltaT).matrix();
|
||||
const Matrix3 actualRot = hatRot
|
||||
* Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
|
||||
const Matrix3 actualRot =
|
||||
hatRot * Rot3::Expmap(delRdelBiasOmega * deltaBiasOmega).matrix();
|
||||
|
||||
// Compare Jacobians
|
||||
EXPECT(assert_equal(expectedRot, actualRot));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST( AHRSFactor, FirstOrderPreIntegratedMeasurements ) {
|
||||
TEST(AHRSFactor, FirstOrderPreIntegratedMeasurements) {
|
||||
// Linearization point
|
||||
Vector3 bias = Vector3::Zero(); ///< Current estimate of rotation rate bias
|
||||
|
||||
|
@ -361,98 +288,76 @@ TEST( AHRSFactor, FirstOrderPreIntegratedMeasurements ) {
|
|||
|
||||
// Actual preintegrated values
|
||||
PreintegratedAhrsMeasurements preintegrated =
|
||||
evaluatePreintegratedMeasurements(bias, measuredOmegas, deltaTs,
|
||||
Vector3(M_PI / 100.0, 0.0, 0.0));
|
||||
integrateMeasurements(bias, measuredOmegas, deltaTs);
|
||||
|
||||
auto f = [&](const Vector3& bias) {
|
||||
return integrateMeasurements(bias, measuredOmegas, deltaTs).deltaRij();
|
||||
};
|
||||
|
||||
// Compute numerical derivatives
|
||||
Matrix expectedDelRdelBias =
|
||||
numericalDerivative11<Rot3, Vector3>(
|
||||
std::bind(&evaluatePreintegratedMeasurementsRotation, std::placeholders::_1,
|
||||
measuredOmegas, deltaTs, Vector3(M_PI / 100.0, 0.0, 0.0)), bias);
|
||||
Matrix expectedDelRdelBias = numericalDerivative11<Rot3, Vector3>(f, bias);
|
||||
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
|
||||
|
||||
// Compare Jacobians
|
||||
EXPECT(
|
||||
assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega(), 1e-3));
|
||||
EXPECT(assert_equal(expectedDelRdelBiasOmega,
|
||||
preintegrated.delRdelBiasOmega(), 1e-3));
|
||||
// 1e-3 needs to be added only when using quaternions for rotations
|
||||
}
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
|
||||
//******************************************************************************
|
||||
TEST( AHRSFactor, ErrorWithBiasesAndSensorBodyDisplacement ) {
|
||||
|
||||
TEST(AHRSFactor, ErrorWithBiasesAndSensorBodyDisplacement) {
|
||||
Vector3 bias(0, 0, 0.3);
|
||||
Rot3 x1(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)));
|
||||
Rot3 x2(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0 + M_PI / 10.0)));
|
||||
Rot3 Ri(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)));
|
||||
Rot3 Rj(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0 + M_PI / 10.0)));
|
||||
|
||||
// Measurements
|
||||
Vector3 omegaCoriolis;
|
||||
omegaCoriolis << 0, 0.1, 0.1;
|
||||
Vector3 measuredOmega;
|
||||
measuredOmega << 0, 0, M_PI / 10.0 + 0.3;
|
||||
Vector3 measuredOmega(0, 0, M_PI / 10.0 + 0.3);
|
||||
double deltaT = 1.0;
|
||||
|
||||
const Pose3 body_P_sensor(Rot3::Expmap(Vector3(0, 0.10, 0.10)),
|
||||
Point3(1, 0, 0));
|
||||
|
||||
PreintegratedAhrsMeasurements pim(Vector3::Zero(), kMeasuredAccCovariance);
|
||||
auto p = std::make_shared<PreintegratedAhrsMeasurements::Params>();
|
||||
p->gyroscopeCovariance = kMeasuredOmegaCovariance;
|
||||
p->body_P_sensor = Pose3(Rot3::Expmap(Vector3(1, 2, 3)), Point3(1, 0, 0));
|
||||
PreintegratedAhrsMeasurements pim(p, Vector3::Zero());
|
||||
|
||||
pim.integrateMeasurement(measuredOmega, deltaT);
|
||||
|
||||
// Check preintegrated covariance
|
||||
EXPECT(assert_equal(kMeasuredAccCovariance, pim.preintMeasCov()));
|
||||
EXPECT(assert_equal(kMeasuredOmegaCovariance, pim.preintMeasCov()));
|
||||
|
||||
// Create factor
|
||||
AHRSFactor factor(X(1), X(2), B(1), pim, omegaCoriolis);
|
||||
AHRSFactor factor(R(1), R(2), B(1), pim, omegaCoriolis);
|
||||
|
||||
// Expected Jacobians
|
||||
Matrix H1e = numericalDerivative11<Vector, Rot3>(
|
||||
std::bind(&callEvaluateError, factor, std::placeholders::_1, x2, bias), x1);
|
||||
Matrix H2e = numericalDerivative11<Vector, Rot3>(
|
||||
std::bind(&callEvaluateError, factor, x1, std::placeholders::_1, bias), x2);
|
||||
Matrix H3e = numericalDerivative11<Vector, Vector3>(
|
||||
std::bind(&callEvaluateError, factor, x1, x2, std::placeholders::_1), bias);
|
||||
|
||||
// Check rotation Jacobians
|
||||
Matrix RH1e = numericalDerivative11<Rot3, Rot3>(
|
||||
std::bind(&evaluateRotationError, factor, std::placeholders::_1, x2, bias), x1);
|
||||
Matrix RH2e = numericalDerivative11<Rot3, Rot3>(
|
||||
std::bind(&evaluateRotationError, factor, x1, std::placeholders::_1, bias), x2);
|
||||
Matrix RH3e = numericalDerivative11<Rot3, Vector3>(
|
||||
std::bind(&evaluateRotationError, factor, x1, x2, std::placeholders::_1), bias);
|
||||
|
||||
// Actual Jacobians
|
||||
Matrix H1a, H2a, H3a;
|
||||
(void) factor.evaluateError(x1, x2, bias, H1a, H2a, H3a);
|
||||
|
||||
EXPECT(assert_equal(H1e, H1a));
|
||||
EXPECT(assert_equal(H2e, H2a));
|
||||
EXPECT(assert_equal(H3e, H3a));
|
||||
// Check Derivatives
|
||||
Values values;
|
||||
values.insert(R(1), Ri);
|
||||
values.insert(R(2), Rj);
|
||||
values.insert(B(1), bias);
|
||||
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-6);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST (AHRSFactor, predictTest) {
|
||||
Vector3 bias(0,0,0);
|
||||
TEST(AHRSFactor, predictTest) {
|
||||
Vector3 bias(0, 0, 0);
|
||||
|
||||
// Measurements
|
||||
Vector3 measuredOmega;
|
||||
measuredOmega << 0, 0, M_PI / 10.0;
|
||||
Vector3 measuredOmega(0, 0, M_PI / 10.0);
|
||||
double deltaT = 0.2;
|
||||
PreintegratedAhrsMeasurements pim(bias, kMeasuredAccCovariance);
|
||||
PreintegratedAhrsMeasurements pim(bias, kMeasuredOmegaCovariance);
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
pim.integrateMeasurement(measuredOmega, deltaT);
|
||||
}
|
||||
// Check preintegrated covariance
|
||||
Matrix expectedMeasCov(3,3);
|
||||
expectedMeasCov = 200*kMeasuredAccCovariance;
|
||||
Matrix expectedMeasCov(3, 3);
|
||||
expectedMeasCov = 200 * kMeasuredOmegaCovariance;
|
||||
EXPECT(assert_equal(expectedMeasCov, pim.preintMeasCov()));
|
||||
|
||||
AHRSFactor factor(X(1), X(2), B(1), pim, kZeroOmegaCoriolis);
|
||||
AHRSFactor factor(R(1), R(2), B(1), pim, kZeroOmegaCoriolis);
|
||||
|
||||
// Predict
|
||||
Rot3 x;
|
||||
Rot3 expectedRot = Rot3::Ypr(20*M_PI, 0, 0);
|
||||
Rot3 expectedRot = Rot3::Ypr(20 * M_PI, 0, 0);
|
||||
Rot3 actualRot = factor.predict(x, bias, pim, kZeroOmegaCoriolis);
|
||||
EXPECT(assert_equal(expectedRot, actualRot, 1e-6));
|
||||
|
||||
|
@ -462,22 +367,19 @@ TEST (AHRSFactor, predictTest) {
|
|||
|
||||
// Actual Jacobians
|
||||
Matrix H;
|
||||
(void) pim.predict(bias,H);
|
||||
(void)pim.predict(bias, H);
|
||||
EXPECT(assert_equal(expectedH, H, 1e-8));
|
||||
}
|
||||
//******************************************************************************
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/nonlinear/Marginals.h>
|
||||
|
||||
TEST (AHRSFactor, graphTest) {
|
||||
TEST(AHRSFactor, graphTest) {
|
||||
// linearization point
|
||||
Rot3 x1(Rot3::RzRyRx(0, 0, 0));
|
||||
Rot3 x2(Rot3::RzRyRx(0, M_PI / 4, 0));
|
||||
Vector3 bias(0,0,0);
|
||||
Rot3 Ri(Rot3::RzRyRx(0, 0, 0));
|
||||
Rot3 Rj(Rot3::RzRyRx(0, M_PI / 4, 0));
|
||||
Vector3 bias(0, 0, 0);
|
||||
|
||||
// PreIntegrator
|
||||
Vector3 biasHat(0, 0, 0);
|
||||
PreintegratedAhrsMeasurements pim(biasHat, kMeasuredAccCovariance);
|
||||
PreintegratedAhrsMeasurements pim(biasHat, kMeasuredOmegaCovariance);
|
||||
|
||||
// Pre-integrate measurements
|
||||
Vector3 measuredOmega(0, M_PI / 20, 0);
|
||||
|
@ -492,16 +394,88 @@ TEST (AHRSFactor, graphTest) {
|
|||
pim.integrateMeasurement(measuredOmega, deltaT);
|
||||
}
|
||||
|
||||
// pim.print("Pre integrated measurementes");
|
||||
AHRSFactor factor(X(1), X(2), B(1), pim, kZeroOmegaCoriolis);
|
||||
values.insert(X(1), x1);
|
||||
values.insert(X(2), x2);
|
||||
// pim.print("Pre integrated measurements");
|
||||
AHRSFactor factor(R(1), R(2), B(1), pim, kZeroOmegaCoriolis);
|
||||
values.insert(R(1), Ri);
|
||||
values.insert(R(2), Rj);
|
||||
values.insert(B(1), bias);
|
||||
graph.push_back(factor);
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values);
|
||||
Values result = optimizer.optimize();
|
||||
Rot3 expectedRot(Rot3::RzRyRx(0, M_PI / 4, 0));
|
||||
EXPECT(assert_equal(expectedRot, result.at<Rot3>(X(2))));
|
||||
EXPECT(assert_equal(expectedRot, result.at<Rot3>(R(2))));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(AHRSFactor, bodyPSensorWithBias) {
|
||||
using noiseModel::Diagonal;
|
||||
|
||||
int numRotations = 10;
|
||||
const Vector3 noiseBetweenBiasSigma(3.0e-6, 3.0e-6, 3.0e-6);
|
||||
SharedDiagonal biasNoiseModel = Diagonal::Sigmas(noiseBetweenBiasSigma);
|
||||
|
||||
// Measurements in the sensor frame:
|
||||
const double omega = 0.1;
|
||||
const Vector3 realOmega(omega, 0, 0);
|
||||
const Vector3 realBias(1, 2, 3); // large !
|
||||
const Vector3 measuredOmega = realOmega + realBias;
|
||||
|
||||
auto p = std::make_shared<PreintegratedAhrsMeasurements::Params>();
|
||||
p->body_P_sensor = Pose3(Rot3::Yaw(M_PI_2), Point3(0, 0, 0));
|
||||
p->gyroscopeCovariance = 1e-8 * I_3x3;
|
||||
double deltaT = 0.005;
|
||||
|
||||
// Specify noise values on priors
|
||||
const Vector3 priorNoisePoseSigmas(0.001, 0.001, 0.001);
|
||||
const Vector3 priorNoiseBiasSigmas(0.5e-1, 0.5e-1, 0.5e-1);
|
||||
SharedDiagonal priorNoisePose = Diagonal::Sigmas(priorNoisePoseSigmas);
|
||||
SharedDiagonal priorNoiseBias = Diagonal::Sigmas(priorNoiseBiasSigmas);
|
||||
|
||||
// Create a factor graph with priors on initial pose, velocity and bias
|
||||
NonlinearFactorGraph graph;
|
||||
Values values;
|
||||
|
||||
graph.addPrior(R(0), Rot3(), priorNoisePose);
|
||||
values.insert(R(0), Rot3());
|
||||
|
||||
// The key to this test is that we specify the bias, in the sensor frame, as
|
||||
// known a priori. We also create factors below that encode our assumption
|
||||
// that this bias is constant over time In theory, after optimization, we
|
||||
// should recover that same bias estimate
|
||||
graph.addPrior(B(0), realBias, priorNoiseBias);
|
||||
values.insert(B(0), realBias);
|
||||
|
||||
// Now add IMU factors and bias noise models
|
||||
const Vector3 zeroBias(0, 0, 0);
|
||||
for (int i = 1; i < numRotations; i++) {
|
||||
PreintegratedAhrsMeasurements pim(p, realBias);
|
||||
for (int j = 0; j < 200; ++j)
|
||||
pim.integrateMeasurement(measuredOmega, deltaT);
|
||||
|
||||
// Create factors
|
||||
graph.emplace_shared<AHRSFactor>(R(i - 1), R(i), B(i - 1), pim);
|
||||
graph.emplace_shared<BetweenFactor<Vector3> >(B(i - 1), B(i), zeroBias,
|
||||
biasNoiseModel);
|
||||
|
||||
values.insert(R(i), Rot3());
|
||||
values.insert(B(i), realBias);
|
||||
}
|
||||
|
||||
// Finally, optimize, and get bias at last time step
|
||||
LevenbergMarquardtParams params;
|
||||
// params.setVerbosityLM("SUMMARY");
|
||||
Values result = LevenbergMarquardtOptimizer(graph, values, params).optimize();
|
||||
const Vector3 biasActual = result.at<Vector3>(B(numRotations - 1));
|
||||
|
||||
// Bias should be a self-fulfilling prophesy:
|
||||
EXPECT(assert_equal(realBias, biasActual, 1e-3));
|
||||
|
||||
// Check that the successive rotations are all `omega` apart:
|
||||
for (int i = 0; i < numRotations; i++) {
|
||||
Rot3 expectedRot = Rot3::Pitch(omega * i);
|
||||
Rot3 actualRot = result.at<Rot3>(R(i));
|
||||
EXPECT(assert_equal(expectedRot, actualRot, 1e-3));
|
||||
}
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
|
|
@ -410,33 +410,33 @@ TEST(ImuFactor, PartialDerivative_wrt_Bias) {
|
|||
const Matrix3 Jr =
|
||||
Rot3::ExpmapDerivative((measuredOmega - biasOmega) * deltaT);
|
||||
|
||||
Matrix3 actualdelRdelBiasOmega = -Jr * deltaT; // the delta bias appears with the minus sign
|
||||
Matrix3 actualDelRdelBiasOmega = -Jr * deltaT; // the delta bias appears with the minus sign
|
||||
|
||||
// Compare Jacobians
|
||||
EXPECT(assert_equal(expectedDelRdelBiasOmega, actualdelRdelBiasOmega, 1e-9));
|
||||
EXPECT(assert_equal(expectedDelRdelBiasOmega, actualDelRdelBiasOmega, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ImuFactor, PartialDerivativeLogmap) {
|
||||
// Linearization point
|
||||
Vector3 thetahat(0.1, 0.1, 0); // Current estimate of rotation rate bias
|
||||
Vector3 thetaHat(0.1, 0.1, 0); // Current estimate of rotation rate bias
|
||||
|
||||
// Measurements
|
||||
Vector3 deltatheta(0, 0, 0);
|
||||
Vector3 deltaTheta(0, 0, 0);
|
||||
|
||||
auto evaluateLogRotation = [=](const Vector3 deltatheta) {
|
||||
auto evaluateLogRotation = [=](const Vector3 delta) {
|
||||
return Rot3::Logmap(
|
||||
Rot3::Expmap(thetahat).compose(Rot3::Expmap(deltatheta)));
|
||||
Rot3::Expmap(thetaHat).compose(Rot3::Expmap(delta)));
|
||||
};
|
||||
|
||||
// Compute numerical derivatives
|
||||
Matrix expectedDelFdeltheta =
|
||||
numericalDerivative11<Vector, Vector3>(evaluateLogRotation, deltatheta);
|
||||
Matrix expectedDelFdelTheta =
|
||||
numericalDerivative11<Vector, Vector3>(evaluateLogRotation, deltaTheta);
|
||||
|
||||
Matrix3 actualDelFdeltheta = Rot3::LogmapDerivative(thetahat);
|
||||
Matrix3 actualDelFdelTheta = Rot3::LogmapDerivative(thetaHat);
|
||||
|
||||
// Compare Jacobians
|
||||
EXPECT(assert_equal(expectedDelFdeltheta, actualDelFdeltheta));
|
||||
EXPECT(assert_equal(expectedDelFdelTheta, actualDelFdelTheta));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -450,8 +450,8 @@ TEST(ImuFactor, fistOrderExponential) {
|
|||
|
||||
// change w.r.t. linearization point
|
||||
double alpha = 0.0;
|
||||
Vector3 deltabiasOmega;
|
||||
deltabiasOmega << alpha, alpha, alpha;
|
||||
Vector3 deltaBiasOmega;
|
||||
deltaBiasOmega << alpha, alpha, alpha;
|
||||
|
||||
const Matrix3 Jr = Rot3::ExpmapDerivative(
|
||||
(measuredOmega - biasOmega) * deltaT);
|
||||
|
@ -459,13 +459,12 @@ TEST(ImuFactor, fistOrderExponential) {
|
|||
Matrix3 delRdelBiasOmega = -Jr * deltaT; // the delta bias appears with the minus sign
|
||||
|
||||
const Matrix expectedRot = Rot3::Expmap(
|
||||
(measuredOmega - biasOmega - deltabiasOmega) * deltaT).matrix();
|
||||
(measuredOmega - biasOmega - deltaBiasOmega) * deltaT).matrix();
|
||||
|
||||
const Matrix3 hatRot =
|
||||
Rot3::Expmap((measuredOmega - biasOmega) * deltaT).matrix();
|
||||
const Matrix3 actualRot = hatRot
|
||||
* Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
|
||||
// hatRot * (I_3x3 + skewSymmetric(delRdelBiasOmega * deltabiasOmega));
|
||||
* Rot3::Expmap(delRdelBiasOmega * deltaBiasOmega).matrix();
|
||||
|
||||
// This is a first order expansion so the equality is only an approximation
|
||||
EXPECT(assert_equal(expectedRot, actualRot));
|
||||
|
@ -728,7 +727,7 @@ TEST(ImuFactor, bodyPSensorWithBias) {
|
|||
using noiseModel::Diagonal;
|
||||
typedef Bias Bias;
|
||||
|
||||
int numFactors = 10;
|
||||
int numPoses = 10;
|
||||
Vector6 noiseBetweenBiasSigma;
|
||||
noiseBetweenBiasSigma << Vector3(2.0e-5, 2.0e-5, 2.0e-5), Vector3(3.0e-6,
|
||||
3.0e-6, 3.0e-6);
|
||||
|
@ -761,7 +760,7 @@ TEST(ImuFactor, bodyPSensorWithBias) {
|
|||
SharedDiagonal priorNoiseBias = Diagonal::Sigmas(priorNoiseBiasSigmas);
|
||||
Vector3 zeroVel(0, 0, 0);
|
||||
|
||||
// Create a factor graph with priors on initial pose, vlocity and bias
|
||||
// Create a factor graph with priors on initial pose, velocity and bias
|
||||
NonlinearFactorGraph graph;
|
||||
Values values;
|
||||
|
||||
|
@ -780,9 +779,8 @@ TEST(ImuFactor, bodyPSensorWithBias) {
|
|||
|
||||
// Now add IMU factors and bias noise models
|
||||
Bias zeroBias(Vector3(0, 0, 0), Vector3(0, 0, 0));
|
||||
for (int i = 1; i < numFactors; i++) {
|
||||
PreintegratedImuMeasurements pim = PreintegratedImuMeasurements(p,
|
||||
priorBias);
|
||||
for (int i = 1; i < numPoses; i++) {
|
||||
PreintegratedImuMeasurements pim(p, priorBias);
|
||||
for (int j = 0; j < 200; ++j)
|
||||
pim.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
|
||||
|
||||
|
@ -796,8 +794,8 @@ TEST(ImuFactor, bodyPSensorWithBias) {
|
|||
}
|
||||
|
||||
// Finally, optimize, and get bias at last time step
|
||||
Values results = LevenbergMarquardtOptimizer(graph, values).optimize();
|
||||
Bias biasActual = results.at<Bias>(B(numFactors - 1));
|
||||
Values result = LevenbergMarquardtOptimizer(graph, values).optimize();
|
||||
Bias biasActual = result.at<Bias>(B(numPoses - 1));
|
||||
|
||||
// And compare it with expected value (our prior)
|
||||
Bias biasExpected(Vector3(0, 0, 0), Vector3(0, 0.01, 0));
|
||||
|
@ -851,11 +849,11 @@ struct ImuFactorMergeTest {
|
|||
actual_pim02.preintegrated(), tol));
|
||||
EXPECT(assert_equal(pim02_expected, actual_pim02, tol));
|
||||
|
||||
ImuFactor::shared_ptr factor01 =
|
||||
auto factor01 =
|
||||
std::make_shared<ImuFactor>(X(0), V(0), X(1), V(1), B(0), pim01);
|
||||
ImuFactor::shared_ptr factor12 =
|
||||
auto factor12 =
|
||||
std::make_shared<ImuFactor>(X(1), V(1), X(2), V(2), B(0), pim12);
|
||||
ImuFactor::shared_ptr factor02_expected = std::make_shared<ImuFactor>(
|
||||
auto factor02_expected = std::make_shared<ImuFactor>(
|
||||
X(0), V(0), X(2), V(2), B(0), pim02_expected);
|
||||
|
||||
ImuFactor::shared_ptr factor02_merged = ImuFactor::Merge(factor01, factor12);
|
||||
|
|
|
@ -109,6 +109,59 @@ TEST(ManifoldPreintegration, computeError) {
|
|||
EXPECT(assert_equal(numericalDerivative33(f, x1, x2, bias), aH3, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ManifoldPreintegration, CompareWithPreintegratedRotation) {
|
||||
// Create a PreintegratedRotation object
|
||||
auto p = std::make_shared<PreintegratedRotationParams>();
|
||||
PreintegratedRotation pim(p);
|
||||
|
||||
// Integrate a single measurement
|
||||
const double omega = 0.1;
|
||||
const Vector3 trueOmega(omega, 0, 0);
|
||||
const Vector3 bias(1, 2, 3);
|
||||
const Vector3 measuredOmega = trueOmega + bias;
|
||||
const double deltaT = 0.5;
|
||||
|
||||
// Check the accumulated rotation.
|
||||
Rot3 expected = Rot3::Roll(omega * deltaT);
|
||||
pim.integrateGyroMeasurement(measuredOmega, bias, deltaT);
|
||||
EXPECT(assert_equal(expected, pim.deltaRij(), 1e-9));
|
||||
|
||||
// Now do the same for a ManifoldPreintegration object
|
||||
imuBias::ConstantBias biasHat {Z_3x1, bias};
|
||||
ManifoldPreintegration manifoldPim(testing::Params(), biasHat);
|
||||
manifoldPim.integrateMeasurement(Z_3x1, measuredOmega, deltaT);
|
||||
EXPECT(assert_equal(expected, manifoldPim.deltaRij(), 1e-9));
|
||||
|
||||
// Check their internal Jacobians are the same:
|
||||
EXPECT(assert_equal(pim.delRdelBiasOmega(), manifoldPim.delRdelBiasOmega()));
|
||||
|
||||
// Check PreintegratedRotation::biascorrectedDeltaRij.
|
||||
Matrix3 H;
|
||||
const double delta = 0.05;
|
||||
const Vector3 biasOmegaIncr(delta, 0, 0);
|
||||
Rot3 corrected = pim.biascorrectedDeltaRij(biasOmegaIncr, H);
|
||||
EQUALITY(Vector3(-deltaT * delta, 0, 0), expected.logmap(corrected));
|
||||
const Rot3 expected2 = Rot3::Roll((omega - delta) * deltaT);
|
||||
EXPECT(assert_equal(expected2, corrected, 1e-9));
|
||||
|
||||
// Check ManifoldPreintegration::biasCorrectedDelta.
|
||||
imuBias::ConstantBias bias_i {Z_3x1, bias + biasOmegaIncr};
|
||||
Matrix96 H2;
|
||||
Vector9 biasCorrected = manifoldPim.biasCorrectedDelta(bias_i, H2);
|
||||
Vector9 expected3;
|
||||
expected3 << Rot3::Logmap(expected2), Z_3x1, Z_3x1;
|
||||
EXPECT(assert_equal(expected3, biasCorrected, 1e-9));
|
||||
|
||||
// Check that this one is sane:
|
||||
auto g = [&](const Vector3& increment) {
|
||||
return manifoldPim.biasCorrectedDelta({Z_3x1, bias + increment}, {});
|
||||
};
|
||||
EXPECT(assert_equal<Matrix>(numericalDerivative11<Vector9, Vector3>(g, Z_3x1),
|
||||
H2.rightCols<3>(),
|
||||
1e-4)); // NOTE(frank): reduced tolerance
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -0,0 +1,138 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testPreintegratedRotation.cpp
|
||||
* @brief Unit test for PreintegratedRotation
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/navigation/PreintegratedRotation.h>
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "gtsam/base/Matrix.h"
|
||||
#include "gtsam/base/Vector.h"
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
//******************************************************************************
|
||||
// Example where gyro measures small rotation about x-axis, with bias.
|
||||
namespace biased_x_rotation {
|
||||
const double omega = 0.1;
|
||||
const Vector3 trueOmega(omega, 0, 0);
|
||||
const Vector3 bias(1, 2, 3);
|
||||
const Vector3 measuredOmega = trueOmega + bias;
|
||||
const double deltaT = 0.5;
|
||||
} // namespace biased_x_rotation
|
||||
|
||||
// Create params where x and y axes are exchanged.
|
||||
static std::shared_ptr<PreintegratedRotationParams> paramsWithTransform() {
|
||||
auto p = std::make_shared<PreintegratedRotationParams>();
|
||||
p->setBodyPSensor({Rot3::Yaw(M_PI_2), {0, 0, 0}});
|
||||
return p;
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(PreintegratedRotation, integrateGyroMeasurement) {
|
||||
// Example where IMU is identical to body frame, then omega is roll
|
||||
using namespace biased_x_rotation;
|
||||
auto p = std::make_shared<PreintegratedRotationParams>();
|
||||
PreintegratedRotation pim(p);
|
||||
|
||||
// Check the value.
|
||||
Matrix3 H_bias;
|
||||
internal::IncrementalRotation f{measuredOmega, deltaT, p->getBodyPSensor()};
|
||||
const Rot3 incrR = f(bias, H_bias);
|
||||
Rot3 expected = Rot3::Roll(omega * deltaT);
|
||||
EXPECT(assert_equal(expected, incrR, 1e-9));
|
||||
|
||||
// Check the derivative:
|
||||
EXPECT(assert_equal(numericalDerivative11<Rot3, Vector3>(f, bias), H_bias));
|
||||
|
||||
// Check value of deltaRij() after integration.
|
||||
Matrix3 F;
|
||||
pim.integrateGyroMeasurement(measuredOmega, bias, deltaT, F);
|
||||
EXPECT(assert_equal(expected, pim.deltaRij(), 1e-9));
|
||||
|
||||
// Check that system matrix F is the first derivative of compose:
|
||||
EXPECT(assert_equal<Matrix3>(pim.deltaRij().inverse().AdjointMap(), F));
|
||||
|
||||
// Make sure delRdelBiasOmega is H_bias after integration.
|
||||
EXPECT(assert_equal<Matrix3>(H_bias, pim.delRdelBiasOmega()));
|
||||
|
||||
// Check if we make a correction to the bias, the value and Jacobian are
|
||||
// correct. Note that the bias is subtracted from the measurement, and the
|
||||
// integration time is taken into account, so we expect -deltaT*delta change.
|
||||
Matrix3 H;
|
||||
const double delta = 0.05;
|
||||
const Vector3 biasOmegaIncr(delta, 0, 0);
|
||||
Rot3 corrected = pim.biascorrectedDeltaRij(biasOmegaIncr, H);
|
||||
EQUALITY(Vector3(-deltaT * delta, 0, 0), expected.logmap(corrected));
|
||||
EXPECT(assert_equal(Rot3::Roll((omega - delta) * deltaT), corrected, 1e-9));
|
||||
|
||||
// TODO(frank): again the derivative is not the *sane* one!
|
||||
// auto g = [&](const Vector3& increment) {
|
||||
// return pim.biascorrectedDeltaRij(increment, {});
|
||||
// };
|
||||
// EXPECT(assert_equal(numericalDerivative11<Rot3, Vector3>(g, Z_3x1), H));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(PreintegratedRotation, integrateGyroMeasurementWithTransform) {
|
||||
// Example where IMU is rotated, so measured omega indicates pitch.
|
||||
using namespace biased_x_rotation;
|
||||
auto p = paramsWithTransform();
|
||||
PreintegratedRotation pim(p);
|
||||
|
||||
// Check the value.
|
||||
Matrix3 H_bias;
|
||||
internal::IncrementalRotation f{measuredOmega, deltaT, p->getBodyPSensor()};
|
||||
Rot3 expected = Rot3::Pitch(omega * deltaT);
|
||||
EXPECT(assert_equal(expected, f(bias, H_bias), 1e-9));
|
||||
|
||||
// Check the derivative:
|
||||
EXPECT(assert_equal(numericalDerivative11<Rot3, Vector3>(f, bias), H_bias));
|
||||
|
||||
// Check value of deltaRij() after integration.
|
||||
Matrix3 F;
|
||||
pim.integrateGyroMeasurement(measuredOmega, bias, deltaT, F);
|
||||
EXPECT(assert_equal(expected, pim.deltaRij(), 1e-9));
|
||||
|
||||
// Check that system matrix F is the first derivative of compose:
|
||||
EXPECT(assert_equal<Matrix3>(pim.deltaRij().inverse().AdjointMap(), F));
|
||||
|
||||
// Make sure delRdelBiasOmega is H_bias after integration.
|
||||
EXPECT(assert_equal<Matrix3>(H_bias, pim.delRdelBiasOmega()));
|
||||
|
||||
// Check the bias correction in same way, but will now yield pitch change.
|
||||
Matrix3 H;
|
||||
const double delta = 0.05;
|
||||
const Vector3 biasOmegaIncr(delta, 0, 0);
|
||||
Rot3 corrected = pim.biascorrectedDeltaRij(biasOmegaIncr, H);
|
||||
EQUALITY(Vector3(0, -deltaT * delta, 0), expected.logmap(corrected));
|
||||
EXPECT(assert_equal(Rot3::Pitch((omega - delta) * deltaT), corrected, 1e-9));
|
||||
|
||||
// TODO(frank): again the derivative is not the *sane* one!
|
||||
// auto g = [&](const Vector3& increment) {
|
||||
// return pim.biascorrectedDeltaRij(increment, {});
|
||||
// };
|
||||
// EXPECT(assert_equal(numericalDerivative11<Rot3, Vector3>(g, Z_3x1), H));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
//******************************************************************************
|
Loading…
Reference in New Issue