From c5e24dbae4828800904bf533e93b02a10c7dff43 Mon Sep 17 00:00:00 2001 From: John Lambert Date: Thu, 21 Oct 2021 10:37:00 -0400 Subject: [PATCH] add LAGO example to Python --- .../gtsam/examples/Pose2SLAMExample_lago.py | 71 +++++++++++++++++++ 1 file changed, 71 insertions(+) create mode 100644 python/gtsam/examples/Pose2SLAMExample_lago.py diff --git a/python/gtsam/examples/Pose2SLAMExample_lago.py b/python/gtsam/examples/Pose2SLAMExample_lago.py new file mode 100644 index 000000000..beac0f8e0 --- /dev/null +++ b/python/gtsam/examples/Pose2SLAMExample_lago.py @@ -0,0 +1,71 @@ +""" +GTSAM Copyright 2010, Georgia Tech Research Corporation, +Atlanta, Georgia 30332-0415 +All Rights Reserved +Authors: Frank Dellaert, et al. (see THANKS for the full author list) +See LICENSE for the license information + +A 2D Pose SLAM example that reads input from g2o, and solve the Pose2 problem +using LAGO (Linear Approximation for Graph Optimization). +Output is written to a file, in g2o format + +Reference: +L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate +approximation for planar pose graph optimization, IJRR, 2014. + +L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation +for graph-based simultaneous localization and mapping, RSS, 2011. + +Author: Luca Carlone (C++), John Lambert (Python) +""" + +import argparse +from argparse import Namespace + +import numpy as np + +import gtsam +from gtsam import Pose2, PriorFactorPose2, Values + + +def vector3(x: float, y: float, z: float) -> np.ndarray: + """Create 3d double numpy array.""" + return np.array([x, y, z], dtype=float) + + +def run(args: Namespace) -> None: + """Run LAGO on input data stored in g2o file.""" + g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt") if args.input is None else args.input + + graph = gtsam.NonlinearFactorGraph() + graph, initial = gtsam.readG2o(g2oFile) + + # Add prior on the pose having index (key) = 0 + priorModel = gtsam.noiseModel.Diagonal.Variances(vector3(1e-6, 1e-6, 1e-8)) + graph.add(PriorFactorPose2(0, Pose2(), priorModel)) + graph.print() + + print("Computing LAGO estimate") + estimateLago: Values = lago.initialize(graph) + print("done!") + + if args.output is None: + estimateLago.print("estimateLago") + else: + outputFile = args.output + print("Writing results to file: ", outputFile) + graphNoKernel = gtsam.NonlinearFactorGraph() + graphNoKernel, initial2 = gtsam.readG2o(g2oFile) + gtsam.writeG2o(graphNoKernel, estimateLago, outputFile) + print("Done! ") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="A 2D Pose SLAM example that reads input from g2o, " + "converts it to a factor graph and does the optimization. " + "Output is written on a file, in g2o format" + ) + parser.add_argument("-i", "--input", help="input file g2o format") + parser.add_argument("-o", "--output", help="the path to the output file with optimized graph") + run(args)