small notation change
parent
eacbaeb84d
commit
c570411cd8
|
@ -2046,7 +2046,7 @@ The adjoint is
|
|||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\
|
||||
& = & \left[\begin{array}{cc}
|
||||
& = & =\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & 1
|
||||
\end{array}\right]\left[\begin{array}{cc}
|
||||
|
@ -2061,7 +2061,7 @@ R^{T} & -R^{T}t\\
|
|||
0 & 0
|
||||
\end{array}\right]\nonumber \\
|
||||
& = & \left[\begin{array}{cc}
|
||||
\skew{\omega} & Rv-\omega R_{\pi/2}t\\
|
||||
\skew{\omega} & Rv-t^{\perp}\omega\\
|
||||
0 & 0
|
||||
\end{array}\right]\label{eq:adjointSE2}
|
||||
\end{eqnarray}
|
||||
|
@ -2075,7 +2075,7 @@ From this we can express the Adjoint map in terms of plane twist coordinates:
|
|||
v'\\
|
||||
\omega'
|
||||
\end{array}\right]=\left[\begin{array}{cc}
|
||||
R & -R_{\pi/2}t\\
|
||||
R & -t^{\perp}\\
|
||||
0 & 1
|
||||
\end{array}\right]\left[\begin{array}{c}
|
||||
v\\
|
||||
|
|
Loading…
Reference in New Issue