diff --git a/tests/testSubgraphSolver.cpp b/tests/testSubgraphSolver.cpp index 91b44a815..84f54a6fa 100644 --- a/tests/testSubgraphSolver.cpp +++ b/tests/testSubgraphSolver.cpp @@ -55,9 +55,11 @@ TEST( SubgraphSolver, constructor1 ) size_t N = 3; boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b + // The first constructor just takes a factor graph (and parameters) + // and it will split the graph into A1 and A2, where A1 is a spanning tree SubgraphSolverParameters parameters; SubgraphSolver solver(Ab, parameters); - VectorValues optimized = solver.optimize(); + VectorValues optimized = solver.optimize(); // does PCG optimization DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5); } @@ -74,6 +76,8 @@ TEST( SubgraphSolver, constructor2 ) JacobianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2 boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab); + // The second constructor takes two factor graphs, + // so the caller can specify the preconditioner (Ab1) and the constraints that are left out (Ab2) SubgraphSolverParameters parameters; SubgraphSolver solver(Ab1_, Ab2_, parameters); VectorValues optimized = solver.optimize(); @@ -93,8 +97,12 @@ TEST( SubgraphSolver, constructor3 ) JacobianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2 boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab); - GaussianBayesNet::shared_ptr Rc1 = EliminationTree::Create(Ab1_)->eliminate(&EliminateQR); + // The caller solves |A1*x-b1|^2 == |R1*x-c1|^2 via QR factorization, where R1 is square UT + GaussianBayesNet::shared_ptr Rc1 = // + EliminationTree::Create(Ab1_)->eliminate(&EliminateQR); + // The third constructor allows the caller to pass an already solved preconditioner Rc1_ + // as a Bayes net, in addition to the "loop closing constraints" Ab2, as before SubgraphSolverParameters parameters; SubgraphSolver solver(Rc1, Ab2_, parameters); VectorValues optimized = solver.optimize();