Merge branch 'develop' into working-hybrid

release/4.3a0
Varun Agrawal 2024-08-22 13:06:31 -04:00
commit c38756c9f2
3 changed files with 52 additions and 1 deletions

View File

@ -593,6 +593,55 @@ TEST(ADT, zero) {
EXPECT_DOUBLES_EQUAL(0, anotb(x11), 1e-9);
}
/// Example ADT from 0 to 11.
ADT exampleADT() {
DiscreteKey A(0, 2), B(1, 3), C(2, 2);
ADT f(A & B & C, "0 6 2 8 4 10 1 7 3 9 5 11");
return f;
}
/* ************************************************************************** */
// Test sum
TEST(ADT, Sum) {
ADT a = exampleADT();
double expected_sum = 0;
for (double i = 0; i < 12; i++) {
expected_sum += i;
}
EXPECT_DOUBLES_EQUAL(expected_sum, a.sum(), 1e-9);
}
/* ************************************************************************** */
// Test normalize
TEST(ADT, Normalize) {
ADT a = exampleADT();
double sum = a.sum();
auto actual = a.normalize(sum);
DiscreteKey A(0, 2), B(1, 3), C(2, 2);
DiscreteKeys keys = DiscreteKeys{A, B, C};
std::vector<double> cpt{0 / sum, 6 / sum, 2 / sum, 8 / sum,
4 / sum, 10 / sum, 1 / sum, 7 / sum,
3 / sum, 9 / sum, 5 / sum, 11 / sum};
ADT expected(keys, cpt);
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************** */
// Test min
TEST(ADT, Min) {
ADT a = exampleADT();
double min = a.min();
EXPECT_DOUBLES_EQUAL(0.0, min, 1e-9);
}
/* ************************************************************************** */
// Test max
TEST(ADT, Max) {
ADT a = exampleADT();
double max = a.max();
EXPECT_DOUBLES_EQUAL(11.0, max, 1e-9);
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -856,7 +856,7 @@ class Cal3_S2Stereo {
gtsam::Matrix K() const;
gtsam::Point2 principalPoint() const;
double baseline() const;
Vector6 vector() const;
gtsam::Vector6 vector() const;
gtsam::Matrix inverse() const;
};

View File

@ -80,6 +80,8 @@ TEST(GaussianBayesNet, Evaluate1) {
smallBayesNet.at(0)->logNormalizationConstant() +
smallBayesNet.at(1)->logNormalizationConstant(),
1e-9);
EXPECT_DOUBLES_EQUAL(log(constant), smallBayesNet.logNormalizationConstant(),
1e-9);
const double actual = smallBayesNet.evaluate(mean);
EXPECT_DOUBLES_EQUAL(constant, actual, 1e-9);
}