Graphing Dogleg vs LM with beta distribution error bars

release/4.3a0
Frank Dellaert 2019-05-15 23:59:16 -04:00
parent 34389973c9
commit c2a5d41eea
1 changed files with 58 additions and 27 deletions

View File

@ -9,17 +9,21 @@ DoglegOptimizer unit tests.
Author: Frank Dellaert
"""
# pylint: disable=no-member, invalid-name
import math
import unittest
import gtsam
import matplotlib.pyplot as plt
import numpy as np
from gtsam.utils.test_case import GtsamTestCase
class TestDoglegOptimizer(GtsamTestCase):
"""Test Dogleg vs LM, isnpired by issue #452."""
def test_DoglegOptimizer(self):
# Linearization point
# Ground truth solution
T11 = gtsam.Pose2(0, 0, 0)
T12 = gtsam.Pose2(1, 0, 0)
T21 = gtsam.Pose2(0, 1, 0)
@ -34,7 +38,7 @@ class TestDoglegOptimizer(GtsamTestCase):
graph.add(gtsam.PriorFactorPose2(21, T21, prior))
# Odometry
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.01, 0.01, 1e6]))
model = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.01, 0.01, 0.3]))
graph.add(gtsam.BetweenFactorPose2(11, 12, T11.between(T12), model))
graph.add(gtsam.BetweenFactorPose2(21, 22, T21.between(T22), model))
@ -42,36 +46,63 @@ class TestDoglegOptimizer(GtsamTestCase):
model_rho = gtsam.noiseModel_Isotropic.Sigma(1, 0.01)
graph.add(gtsam.RangeFactorPose2(12, 22, 1.0, model_rho))
# Print graph
print(graph)
num_samples = 1000
print("num samples = {}%".format(num_samples))
sigma = 0.1
values = gtsam.Values()
values.insert(11, T11.retract(np.random.normal(0, sigma, 3)))
values.insert(12, T12)
values.insert(21, T21)
values.insert(22, T22)
linearized = graph.linearize(values)
params = gtsam.DoglegParams()
params.setDeltaInitial(10) # default was 1.0
# Get Jacobian
ordering = gtsam.Ordering()
ordering.push_back(11)
ordering.push_back(21)
ordering.push_back(12)
ordering.push_back(22)
A, b = linearized.jacobian(ordering)
Q = np.dot(A.transpose(), A)
print(np.linalg.det(Q))
# Add progressively more noise to ground truth
sigmas = [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20]
n = len(sigmas)
p_dl, s_dl, p_lm, s_lm = [0]*n, [0]*n, [0]*n, [0]*n
for i, sigma in enumerate(sigmas):
dl_fails, lm_fails = 0, 0
# Attempt num_samples optimizations for both DL and LM
for _attempt in range(num_samples):
initial = gtsam.Values()
initial.insert(11, T11.retract(np.random.normal(0, sigma, 3)))
initial.insert(12, T12.retract(np.random.normal(0, sigma, 3)))
initial.insert(21, T21.retract(np.random.normal(0, sigma, 3)))
initial.insert(22, T22.retract(np.random.normal(0, sigma, 3)))
bn = linearized.eliminateSequential(ordering)
# Run dogleg optimizer
dl = gtsam.DoglegOptimizer(graph, initial, params)
result = dl.optimize()
dl_fails += graph.error(result) > 1e-9
# Print gradient
linearized.gradientAtZero()
# Run
lm = gtsam.LevenbergMarquardtOptimizer(graph, initial)
result = lm.optimize()
lm_fails += graph.error(result) > 1e-9
# Run dogleg optimizer
dl = gtsam.DoglegOptimizer(graph, values)
result = dl.optimize()
print(graph.error(result))
# Calculate Bayes estimate of success probability
# using a beta prior of alpha=0.5, beta=0.5
alpha, beta = 0.5, 0.5
v = num_samples+alpha+beta
p_dl[i] = (num_samples-dl_fails+alpha)/v
p_lm[i] = (num_samples-lm_fails+alpha)/v
def stddev(p):
"""Calculate standard deviation."""
return math.sqrt(p*(1-p)/(1+v))
s_dl[i] = stddev(p_dl[i])
s_lm[i] = stddev(p_lm[i])
fmt = "sigma= {}:\tDL success {:.2f}% +/- {:.2f}%, LM success {:.2f}% +/- {:.2f}%"
print(fmt.format(sigma,
100*p_dl[i], 100*s_dl[i],
100*p_lm[i], 100*s_lm[i]))
fig, ax = plt.subplots()
dl_plot = plt.errorbar(sigmas, p_dl, yerr=s_dl, label="Dogleg")
lm_plot = plt.errorbar(sigmas, p_lm, yerr=s_lm, label="LM")
plt.title("Dogleg emprical success vs. LM")
plt.legend(handles=[dl_plot, lm_plot])
ax.set_xlim(0, sigmas[-1]+1)
ax.set_ylim(0, 1)
plt.show()
if __name__ == "__main__":