diff --git a/matlab/unstable_examples/+imuSimulator/covarianceAnalysisBetween.m b/matlab/unstable_examples/+imuSimulator/covarianceAnalysisBetween.m index 5c6c2b84f..cf996c038 100644 --- a/matlab/unstable_examples/+imuSimulator/covarianceAnalysisBetween.m +++ b/matlab/unstable_examples/+imuSimulator/covarianceAnalysisBetween.m @@ -9,7 +9,7 @@ clear all close all %% Configuration -useAspnData = 0; % controls whether or not to use the ASPN data for scenario 2 as the ground truth traj +useRealData = 0; % controls whether or not to use the Real data (is available) as the ground truth traj includeIMUFactors = 1; % if true, IMU type 1 Factors will be generated for the random trajectory includeCameraFactors = 0; trajectoryLength = 50; @@ -39,7 +39,7 @@ unsmooth_DR = 0.1; % controls smoothness on rotation norm gtValues = Values; gtGraph = NonlinearFactorGraph; -if useAspnData == 1 +if useRealData == 1 sigma_ang = 1e-4; sigma_cart = 40; else @@ -49,7 +49,7 @@ end noiseVectorPose = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart]; noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose); -if useAspnData == 1 +if useRealData == 1 %% Create a ground truth trajectory using scenario 2 data fprintf('\nUsing Scenario 2 ground truth data\n'); % load scenario 2 ground truth data @@ -159,7 +159,7 @@ for k=1:numMonteCarloRuns graph = NonlinearFactorGraph; % noisy prior - if useAspnData == 1 + if useRealData == 1 currentPoseKey = symbol('x', 0); initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]); initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];