Done with all transform_to derivatives
parent
d9c185498e
commit
c20498c688
556
doc/math.lyx
556
doc/math.lyx
|
@ -1233,25 +1233,25 @@ Hence, the final derivative of an action in its first argument is
|
|||
|
||||
\begin_layout Standard
|
||||
\begin_inset FormulaMacro
|
||||
\renewcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}}
|
||||
\newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}}
|
||||
{\mathfrak{\mathbb{R}^{6}}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\renewcommand{\SEthree}{SE(3)}
|
||||
\newcommand{\SEthree}{SE(3)}
|
||||
{SE(3)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\renewcommand{\sethree}{\mathfrak{se(3)}}
|
||||
\newcommand{\sethree}{\mathfrak{se(3)}}
|
||||
{\mathfrak{se(3)}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\renewcommand{\xihat}{\hat{\xi}}
|
||||
\newcommand{\xihat}{\hat{\xi}}
|
||||
{\hat{\xi}}
|
||||
\end_inset
|
||||
|
||||
|
@ -1327,7 +1327,47 @@ v\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
|
|||
|
||||
Note we follow Frank Park's convention and reserve the first three components
|
||||
for rotation, and the last three for translation.
|
||||
Applying the exponential map to a twist
|
||||
Hence, with this parameterization, the generators for
|
||||
\begin_inset Formula $\SEthree$
|
||||
\end_inset
|
||||
|
||||
are
|
||||
\begin_inset Formula \[
|
||||
G^{1}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & -1 & 0\\
|
||||
0 & 1 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 1 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
-1 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
|
||||
0 & -1 & 0 & 0\\
|
||||
1 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula \[
|
||||
G^{4}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Applying the exponential map to a twist
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
|
@ -1482,85 +1522,55 @@ The action of
|
|||
|
||||
by using homogeneous coordinates
|
||||
\begin_inset Formula \[
|
||||
q=\left[\begin{array}{cc}
|
||||
\hat{q}=\left[\begin{array}{c}
|
||||
q\\
|
||||
1\end{array}\right]=\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & 1\end{array}\right]\left[\begin{array}{c}
|
||||
p\\
|
||||
1\end{array}\right]\]
|
||||
1\end{array}\right]=T\hat{p}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The generators for
|
||||
\begin_inset Formula $\SEthree$
|
||||
\end_inset
|
||||
|
||||
are
|
||||
\begin_inset Formula \[
|
||||
G_{1}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & -1 & 0\\
|
||||
0 & 1 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\mbox{}G_{2}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 1 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
-1 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\mbox{ }G_{1}=\left(\begin{array}{cccc}
|
||||
0 & -1 & 0 & 0\\
|
||||
1 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula \[
|
||||
G_{4}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\mbox{}G_{5}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\mbox{ }G_{6}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\end{array}\right)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
and hence a twist around the origin applies to homogeneous coordinates
|
||||
\begin_inset Formula $\hat{p}\in\mathbb{R}^{4}$
|
||||
\end_inset
|
||||
|
||||
as
|
||||
\begin_inset Formula \[
|
||||
\sum_{i}\xi_{i}G_{i}=\left(\begin{array}{cccc}
|
||||
0 & -\omega_{z} & \omega_{y} & v_{x}\\
|
||||
\omega_{z} & 0 & -\omega_{x} & v_{y}\\
|
||||
-\omega_{y} & \omega_{x} & 0 & v_{z}\\
|
||||
0 & 0 & 0 & 0\end{array}\right)=\left[\begin{array}{cc}
|
||||
\Skew{\omega} & v\\
|
||||
0 & 0\end{array}\right]=\xihat\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Hence, at the origin, an incremental action
|
||||
We would now like to know what an incremental rotation parameterized by
|
||||
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
on a point
|
||||
\begin_inset Formula $p$
|
||||
would do:
|
||||
\begin_inset Formula \[
|
||||
\hat{q}(\xi)=Te^{\xihat}\hat{p}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
induces the velocity
|
||||
hence the derivative (following the exposition in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Derivatives-of-Actions"
|
||||
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\begin_inset Formula \[
|
||||
\left[\begin{array}{cc}
|
||||
\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=TH_{p}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\xihat\hat{p}$
|
||||
\end_inset
|
||||
|
||||
corresponds to a velocity in
|
||||
\begin_inset Formula $\mathbb{R}^{4}$
|
||||
\end_inset
|
||||
|
||||
(in the local
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
frame):
|
||||
\begin_inset Formula \[
|
||||
\xihat\hat{p}=\left[\begin{array}{cc}
|
||||
\Skew{\omega} & v\\
|
||||
0 & 0\end{array}\right]\left[\begin{array}{c}
|
||||
p\\
|
||||
|
@ -1570,16 +1580,23 @@ p\\
|
|||
|
||||
\end_inset
|
||||
|
||||
We can write this as a velocity in
|
||||
Notice how velocities are anologous to points at infinity in projective
|
||||
geometry: they correspond to free vectors indicating a direction and magnitude
|
||||
of change.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
By only taking the top three rows, we can write this as a velocity in
|
||||
\begin_inset Formula $\Rthree$
|
||||
\end_inset
|
||||
|
||||
as the product of a
|
||||
, as the product of a
|
||||
\begin_inset Formula $3\times6$
|
||||
\end_inset
|
||||
|
||||
matrix
|
||||
\begin_inset Formula $H(p)$
|
||||
\begin_inset Formula $H_{p}$
|
||||
\end_inset
|
||||
|
||||
that acts upon the exponential coordinates
|
||||
|
@ -1591,81 +1608,33 @@ We can write this as a velocity in
|
|||
\omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc}
|
||||
-\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c}
|
||||
\omega\\
|
||||
v\end{array}\right]=H(p)\xi\]
|
||||
v\end{array}\right]=H_{p}\xi\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Now, if we want to apply this in a frame
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
, we can (1) transform the point
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
to the origin using
|
||||
\begin_inset Formula $T^{-1}$
|
||||
\end_inset
|
||||
|
||||
, apply the action
|
||||
\begin_inset Formula $\xihat$
|
||||
\end_inset
|
||||
|
||||
, and transform back to
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In short
|
||||
Hence, the final derivative of the group action is
|
||||
\begin_inset Formula \[
|
||||
\left[\begin{array}{c}
|
||||
q\\
|
||||
1\end{array}\right]=Te^{\xihat}T^{-1}\left[\begin{array}{c}
|
||||
p\\
|
||||
1\end{array}\right]=\exp\left(\Ad T\xihat\right)\left[\begin{array}{c}
|
||||
p\\
|
||||
1\end{array}\right]\]
|
||||
\deriv{\hat{q}(\xi)}{\xi}=T\hat{H}_{p}=\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & 1\end{array}\right]\left[\begin{array}{cc}
|
||||
\Skew{-p} & I_{3}\\
|
||||
0 & 0\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
To get the velocity of the point in frame
|
||||
\begin_inset Formula $T$
|
||||
in homogenous coordinates.
|
||||
In
|
||||
\begin_inset Formula $\Rthree$
|
||||
\end_inset
|
||||
|
||||
, we have
|
||||
this becomes:
|
||||
\begin_inset Formula \[
|
||||
H(p)\Ad T\xi=\left[\begin{array}{cc}
|
||||
-\Skew p & I_{3}\end{array}\right]\left[\begin{array}{cc}
|
||||
R & 0\\
|
||||
\Skew tR & R\end{array}\right]\xi=R\left[\begin{array}{cc}
|
||||
-\Skew{T^{-1}p} & I_{3}\end{array}\right]\xi=H(T^{-1}p)\xi\]
|
||||
\deriv{q(\xi)}{\xi}=R\left[\begin{array}{cc}
|
||||
-\Skew p & I_{3}\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where I made use of
|
||||
\begin_inset Formula $\Skew{t-p}R=-RR^{T}\Skew{p-t}R=-R\Skew{R^{T}(p-t)}=-R\Skew{T^{-1}p}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This is intuitive in hindsight: we transform
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
back to the orgin by
|
||||
\begin_inset Formula $T^{-1}p$
|
||||
\end_inset
|
||||
|
||||
, apply
|
||||
\begin_inset Formula $H(.)$
|
||||
\end_inset
|
||||
|
||||
to get a velocity, and only need the rotation
|
||||
\begin_inset Formula $R$
|
||||
\end_inset
|
||||
|
||||
to transform it back to the orginal frame (as velocities are not affected
|
||||
by translation).
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
@ -1800,30 +1769,6 @@ which maps the angle
|
|||
|
||||
\end_inset
|
||||
|
||||
Note that
|
||||
\begin_inset Formula \begin{equation}
|
||||
\skew{\theta}\left[\begin{array}{c}
|
||||
x\\
|
||||
y\end{array}\right]=\theta R_{\pi/2}\left[\begin{array}{c}
|
||||
x\\
|
||||
y\end{array}\right]=\theta\left[\begin{array}{c}
|
||||
-y\\
|
||||
x\end{array}\right]\label{eq:RestrictedCross}\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
which acts like a restricted
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
cross product
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
in the plane.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The exponential map can be computed in closed form as
|
||||
\begin_inset Formula \[
|
||||
R=e^{\skew{\theta}}=\left[\begin{array}{cc}
|
||||
|
@ -1891,6 +1836,92 @@ and between in its second argument,
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Derivatives of Actions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In the case of
|
||||
\begin_inset Formula $\SOtwo$
|
||||
\end_inset
|
||||
|
||||
the vector space is
|
||||
\begin_inset Formula $\Rtwo$
|
||||
\end_inset
|
||||
|
||||
, and the group action corresponds to rotating a point
|
||||
\begin_inset Formula \[
|
||||
q=Rp\]
|
||||
|
||||
\end_inset
|
||||
|
||||
We would now like to know what an incremental rotation parameterized by
|
||||
|
||||
\begin_inset Formula $\theta$
|
||||
\end_inset
|
||||
|
||||
would do:
|
||||
\begin_inset Formula \[
|
||||
q(\text{\theta})=Re^{\skew{\theta}}p\]
|
||||
|
||||
\end_inset
|
||||
|
||||
hence the derivative (following the exposition in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Derivatives-of-Actions"
|
||||
|
||||
\end_inset
|
||||
|
||||
):
|
||||
\begin_inset Formula \[
|
||||
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\theta}}p\right)=R\deriv{}{\omega}\left(\skew{\theta}p\right)=RH_{p}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Note that
|
||||
\begin_inset Formula \begin{equation}
|
||||
\skew{\theta}\left[\begin{array}{c}
|
||||
x\\
|
||||
y\end{array}\right]=\theta R_{\pi/2}\left[\begin{array}{c}
|
||||
x\\
|
||||
y\end{array}\right]=\theta\left[\begin{array}{c}
|
||||
-y\\
|
||||
x\end{array}\right]\label{eq:RestrictedCross}\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
which acts like a restricted
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
cross product
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
in the plane.
|
||||
Hence
|
||||
\begin_inset Formula \[
|
||||
\skew{\theta}p=\left[\begin{array}{c}
|
||||
-y\\
|
||||
x\end{array}\right]\theta=H_{p}\theta\]
|
||||
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $H_{p}=R_{pi/2}p$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Hence, the final derivative of an action in its first argument is
|
||||
\begin_inset Formula \[
|
||||
\deriv{q(\theta)}{\theta}=RH_{p}=RR_{pi/2}p=R_{pi/2}Rp=R_{pi/2}q\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
@ -1978,7 +2009,40 @@ Note we think of robots as having a pose
|
|||
|
||||
and hence I switched the order above, reserving the first two components
|
||||
for translation and the last for rotation.
|
||||
Applying the exponential map to a twist
|
||||
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
\size normal
|
||||
\emph off
|
||||
\bar no
|
||||
\noun off
|
||||
\color none
|
||||
The Lie group generators are
|
||||
\begin_inset Formula \[
|
||||
G^{x}=\left[\begin{array}{ccc}
|
||||
0 & 0 & 1\\
|
||||
0 & 0 & 0\\
|
||||
0 & 0 & 0\end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc}
|
||||
0 & 0 & 0\\
|
||||
0 & 0 & 1\\
|
||||
0 & 0 & 0\end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc}
|
||||
0 & -1 & 0\\
|
||||
1 & 0 & 0\\
|
||||
0 & 0 & 0\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\family default
|
||||
\series default
|
||||
\shape default
|
||||
\size default
|
||||
\emph default
|
||||
\bar default
|
||||
\noun default
|
||||
\color inherit
|
||||
Applying the exponential map to a twist
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
|
@ -2060,8 +2124,89 @@ We can just define all derivatives in terms of the above adjoint map:
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Part
|
||||
Old Stuff
|
||||
\begin_layout Subsection
|
||||
The derivatives of Actions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The action of
|
||||
\begin_inset Formula $\SEtwo$
|
||||
\end_inset
|
||||
|
||||
on 2D points is done by embedding the points in
|
||||
\begin_inset Formula $\mathbb{R}^{3}$
|
||||
\end_inset
|
||||
|
||||
by using homogeneous coordinates
|
||||
\begin_inset Formula \[
|
||||
\hat{q}=\left[\begin{array}{c}
|
||||
q\\
|
||||
1\end{array}\right]=\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & 1\end{array}\right]\left[\begin{array}{c}
|
||||
p\\
|
||||
1\end{array}\right]=T\hat{p}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Analoguous to
|
||||
\begin_inset Formula $\SEthree$
|
||||
\end_inset
|
||||
|
||||
, we can compute a velocity
|
||||
\begin_inset Formula $\xihat\hat{p}$
|
||||
\end_inset
|
||||
|
||||
in the local
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
frame:
|
||||
\begin_inset Formula \[
|
||||
\xihat\hat{p}=\left[\begin{array}{cc}
|
||||
\skew{\omega} & v\\
|
||||
0 & 0\end{array}\right]\left[\begin{array}{c}
|
||||
p\\
|
||||
1\end{array}\right]=\left[\begin{array}{c}
|
||||
\skew{\omega}p+v\\
|
||||
0\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
By only taking the top two rows, we can write this as a velocity in
|
||||
\begin_inset Formula $\Rtwo$
|
||||
\end_inset
|
||||
|
||||
, as the product of a
|
||||
\begin_inset Formula $2\times3$
|
||||
\end_inset
|
||||
|
||||
matrix
|
||||
\begin_inset Formula $H_{p}$
|
||||
\end_inset
|
||||
|
||||
that acts upon the exponential coordinates
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
directly:
|
||||
\begin_inset Formula \[
|
||||
\skew{\omega}p+v=v+R_{pi/2}p\omega=\left[\begin{array}{cc}
|
||||
I_{2} & R_{pi/2}p\end{array}\right]\left[\begin{array}{c}
|
||||
v\\
|
||||
\omega\end{array}\right]=H_{p}\xi\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Hence, the final derivative of the group action is
|
||||
\begin_inset Formula \[
|
||||
\deriv{q(\xi)}{\xi}=R\left[\begin{array}{cc}
|
||||
I_{2} & R_{pi/2}p\end{array}\right]=\left[\begin{array}{cc}
|
||||
R & R_{pi/2}q\end{array}\right]\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
@ -2091,43 +2236,10 @@ where
|
|||
\end_inset
|
||||
|
||||
is an incremental rotation angle.
|
||||
The derivatives of
|
||||
\series bold
|
||||
\emph on
|
||||
rotate
|
||||
\series default
|
||||
\emph default
|
||||
are then found easily, using
|
||||
\begin_inset Formula \begin{eqnarray*}
|
||||
\frac{\partial x'}{\partial\delta} & = & \frac{\partial(x\cos\theta'-y\sin\theta')}{\partial\delta}\\
|
||||
& = & \frac{\partial(x(\cos\theta\cos\delta-\sin\theta\sin\delta)-y(\sin\theta\cos\delta+\cos\theta\sin\delta))}{\partial\delta}\\
|
||||
& = & x(-\cos\theta\sin\delta-\sin\theta\cos\delta)-y(-\sin\theta\sin\delta+\cos\theta\cos\delta)\\
|
||||
& = & -x\sin\theta-y\cos\theta=-y'\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula \begin{eqnarray*}
|
||||
\frac{\partial y'}{\partial\delta} & = & \frac{\partial(x\sin\theta'+y\cos\theta')}{\partial\delta}\\
|
||||
& = & \frac{\partial(x(\sin\theta\cos\delta+\cos\theta\sin\delta)+y(\cos\theta\cos\delta-\sin\theta\sin\delta))}{\partial\delta}\\
|
||||
& = & x(-\sin\theta\sin\delta+\cos\theta\cos\delta)+y(-\cos\theta\sin\delta-\sin\theta\cos\delta)\\
|
||||
& = & x\cos\theta-y\sin\theta=x'\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula \[
|
||||
\frac{\partial p'}{\partial p}=\frac{\partial(Rp)}{\partial p}=R\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Similarly, unrotate
|
||||
Derivatives of unrotate
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -2210,56 +2322,6 @@ The derivative of a cross product
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Rot3
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
An incremental rotation is applied as (switched to right-multiply Jan 25
|
||||
2010)
|
||||
\begin_inset Formula \[
|
||||
R'=R(I+\Omega)\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\Omega=\Skew{\omega}$
|
||||
\end_inset
|
||||
|
||||
is the skew symmetric matrix corresponding to the incremental rotation
|
||||
angles
|
||||
\begin_inset Formula $\omega=(\omega_{x},\omega_{y},\omega_{z})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The derivatives of
|
||||
\series bold
|
||||
\emph on
|
||||
rotate
|
||||
\series default
|
||||
\emph default
|
||||
are then found easily, using
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Dcross1"
|
||||
|
||||
\end_inset
|
||||
|
||||
:
|
||||
\begin_inset Formula \[
|
||||
\frac{\partial(R(I+\Omega)x)}{\partial\omega}=\frac{\partial(R\Omega x)}{\partial\omega}=\frac{\partial(R\left(\omega\times x\right))}{\partial\omega}=R\frac{\partial\left(\omega\times x\right)}{\partial\omega}=R\Skew{-x}\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula \[
|
||||
\frac{\partial(Rx)}{\partial x}=R\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
|
BIN
doc/math.pdf
BIN
doc/math.pdf
Binary file not shown.
Loading…
Reference in New Issue