got it!
parent
0194e3df94
commit
c1da490c2d
|
@ -366,20 +366,20 @@ TEST( SmartStereoProjectionFactorPP, noisy ) {
|
|||
DOUBLES_EQUAL(actualError1, 5381978, 1); // value freeze
|
||||
}
|
||||
|
||||
/* *************************************************************************
|
||||
/* *************************************************************************/
|
||||
TEST( SmartStereoProjectionFactorPP, 3poses_smart_projection_factor ) {
|
||||
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 pose1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
StereoCamera cam1(pose1, K2);
|
||||
Pose3 w_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
StereoCamera cam1(w_Pose_cam1, K2);
|
||||
|
||||
// create second camera 1 meter to the right of first camera
|
||||
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
StereoCamera cam2(pose2, K2);
|
||||
Pose3 w_Pose_cam2 = w_Pose_cam1 * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
StereoCamera cam2(w_Pose_cam2, K2);
|
||||
|
||||
// create third camera 1 meter above the first camera
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0, -1, 0));
|
||||
StereoCamera cam3(pose3, K2);
|
||||
Pose3 w_Pose_cam3 = w_Pose_cam1 * Pose3(Rot3(), Point3(0, -1, 0));
|
||||
StereoCamera cam3(w_Pose_cam3, K2);
|
||||
|
||||
// three landmarks ~5 meters infront of camera
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
|
@ -394,116 +394,136 @@ TEST( SmartStereoProjectionFactorPP, 3poses_smart_projection_factor ) {
|
|||
vector<StereoPoint2> measurements_l3 = stereo_projectToMultipleCameras(cam1,
|
||||
cam2, cam3, landmark3);
|
||||
|
||||
KeyVector views;
|
||||
views.push_back(x1);
|
||||
views.push_back(x2);
|
||||
views.push_back(x3);
|
||||
KeyVector poseKeys;
|
||||
poseKeys.push_back(x1);
|
||||
poseKeys.push_back(x2);
|
||||
poseKeys.push_back(x3);
|
||||
|
||||
KeyVector extrinsicKeys;
|
||||
extrinsicKeys.push_back(body_P_cam1_key);
|
||||
extrinsicKeys.push_back(body_P_cam2_key);
|
||||
extrinsicKeys.push_back(body_P_cam3_key);
|
||||
|
||||
SmartStereoProjectionParams smart_params;
|
||||
smart_params.triangulation.enableEPI = true;
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor1(new SmartStereoProjectionFactorPP(model, smart_params));
|
||||
smartFactor1->add(measurements_l1, views, K2);
|
||||
smartFactor1->add(measurements_l1, poseKeys, extrinsicKeys, K2);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor2(new SmartStereoProjectionFactorPP(model, smart_params));
|
||||
smartFactor2->add(measurements_l2, views, K2);
|
||||
smartFactor2->add(measurements_l2, poseKeys, extrinsicKeys, K2);
|
||||
|
||||
SmartStereoProjectionFactorPP::shared_ptr smartFactor3(new SmartStereoProjectionFactorPP(model, smart_params));
|
||||
smartFactor3->add(measurements_l3, views, K2);
|
||||
smartFactor3->add(measurements_l3, poseKeys, extrinsicKeys, K2);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
// Values
|
||||
Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0));
|
||||
Pose3 body_Pose_cam2 = Pose3(Rot3::Ypr(-M_PI / 4, 0.1, 1.0),Point3(1, 1, 1));
|
||||
Pose3 body_Pose_cam3 = Pose3::identity();
|
||||
Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse());
|
||||
Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam2.inverse());
|
||||
Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam3.inverse());
|
||||
|
||||
Values values;
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100), Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
values.insert(x1, w_Pose_body1);
|
||||
values.insert(x2, w_Pose_body2);
|
||||
values.insert(x3, w_Pose_body3);
|
||||
values.insert(body_P_cam1_key, body_Pose_cam1);
|
||||
values.insert(body_P_cam2_key, body_Pose_cam2);
|
||||
// initialize third calibration with some noise, we expect it to move back to original pose3
|
||||
values.insert(body_P_cam3_key, body_Pose_cam3 * noise_pose);
|
||||
|
||||
// Graph
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, pose1, noisePrior);
|
||||
graph.addPrior(x2, pose2, noisePrior);
|
||||
graph.addPrior(x1, w_Pose_body1, noisePrior);
|
||||
graph.addPrior(x2, w_Pose_body2, noisePrior);
|
||||
graph.addPrior(x3, w_Pose_body3, noisePrior);
|
||||
// we might need some prior on the calibration too
|
||||
graph.addPrior(body_P_cam1_key, body_Pose_cam1, noisePrior);
|
||||
graph.addPrior(body_P_cam2_key, body_Pose_cam2, noisePrior);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, pose1);
|
||||
values.insert(x2, pose2);
|
||||
// initialize third pose with some noise, we expect it to move back to original pose3
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
EXPECT(
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3) * values.at<Pose3>(body_P_cam3_key)));
|
||||
|
||||
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
|
||||
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph.error(values), 1e-7); // initial error
|
||||
|
||||
// get triangulated landmarks from smart factors
|
||||
Point3 landmark1_smart = *smartFactor1->point();
|
||||
Point3 landmark2_smart = *smartFactor2->point();
|
||||
Point3 landmark3_smart = *smartFactor3->point();
|
||||
// // get triangulated landmarks from smart factors
|
||||
// Point3 landmark1_smart = *smartFactor1->point();
|
||||
// Point3 landmark2_smart = *smartFactor2->point();
|
||||
// Point3 landmark3_smart = *smartFactor3->point();
|
||||
//
|
||||
// Values result;
|
||||
// gttic_(SmartStereoProjectionFactorPP);
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
||||
// result = optimizer.optimize();
|
||||
// gttoc_(SmartStereoProjectionFactorPP);
|
||||
// tictoc_finishedIteration_();
|
||||
//
|
||||
// EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
|
||||
|
||||
Values result;
|
||||
gttic_(SmartStereoProjectionFactorPP);
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
|
||||
result = optimizer.optimize();
|
||||
gttoc_(SmartStereoProjectionFactorPP);
|
||||
tictoc_finishedIteration_();
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
|
||||
|
||||
// cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl;
|
||||
|
||||
GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
|
||||
VectorValues delta = GFG->optimize();
|
||||
VectorValues expected = VectorValues::Zero(delta);
|
||||
EXPECT(assert_equal(expected, delta, 1e-6));
|
||||
|
||||
// result.print("results of 3 camera, 3 landmark optimization \n");
|
||||
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
||||
|
||||
// ***************************************************************
|
||||
// Same problem with regular Stereo factors, expect same error!
|
||||
// ****************************************************************
|
||||
|
||||
// landmark1_smart.print("landmark1_smart");
|
||||
// landmark2_smart.print("landmark2_smart");
|
||||
// landmark3_smart.print("landmark3_smart");
|
||||
|
||||
// add landmarks to values
|
||||
values.insert(L(1), landmark1_smart);
|
||||
values.insert(L(2), landmark2_smart);
|
||||
values.insert(L(3), landmark3_smart);
|
||||
|
||||
// add factors
|
||||
NonlinearFactorGraph graph2;
|
||||
|
||||
graph2.addPrior(x1, pose1, noisePrior);
|
||||
graph2.addPrior(x2, pose2, noisePrior);
|
||||
|
||||
typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
|
||||
|
||||
bool verboseCheirality = true;
|
||||
|
||||
graph2.push_back(ProjectionFactor(measurements_l1[0], model, x1, L(1), K2, false, verboseCheirality));
|
||||
graph2.push_back(ProjectionFactor(measurements_l1[1], model, x2, L(1), K2, false, verboseCheirality));
|
||||
graph2.push_back(ProjectionFactor(measurements_l1[2], model, x3, L(1), K2, false, verboseCheirality));
|
||||
|
||||
graph2.push_back(ProjectionFactor(measurements_l2[0], model, x1, L(2), K2, false, verboseCheirality));
|
||||
graph2.push_back(ProjectionFactor(measurements_l2[1], model, x2, L(2), K2, false, verboseCheirality));
|
||||
graph2.push_back(ProjectionFactor(measurements_l2[2], model, x3, L(2), K2, false, verboseCheirality));
|
||||
|
||||
graph2.push_back(ProjectionFactor(measurements_l3[0], model, x1, L(3), K2, false, verboseCheirality));
|
||||
graph2.push_back(ProjectionFactor(measurements_l3[1], model, x2, L(3), K2, false, verboseCheirality));
|
||||
graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
|
||||
|
||||
// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
|
||||
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values), 1e-7);
|
||||
|
||||
LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
|
||||
Values result2 = optimizer2.optimize();
|
||||
EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5);
|
||||
|
||||
// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
|
||||
//// cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl;
|
||||
//
|
||||
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
|
||||
// VectorValues delta = GFG->optimize();
|
||||
// VectorValues expected = VectorValues::Zero(delta);
|
||||
// EXPECT(assert_equal(expected, delta, 1e-6));
|
||||
//
|
||||
// // result.print("results of 3 camera, 3 landmark optimization \n");
|
||||
// EXPECT(assert_equal(w_Pose_cam3, result.at<Pose3>(x3)));
|
||||
//
|
||||
// // ***************************************************************
|
||||
// // Same problem with regular Stereo factors, expect same error!
|
||||
// // ****************************************************************
|
||||
//
|
||||
//// landmark1_smart.print("landmark1_smart");
|
||||
//// landmark2_smart.print("landmark2_smart");
|
||||
//// landmark3_smart.print("landmark3_smart");
|
||||
//
|
||||
// // add landmarks to values
|
||||
// values.insert(L(1), landmark1_smart);
|
||||
// values.insert(L(2), landmark2_smart);
|
||||
// values.insert(L(3), landmark3_smart);
|
||||
//
|
||||
// // add factors
|
||||
// NonlinearFactorGraph graph2;
|
||||
//
|
||||
// graph2.addPrior(x1, w_Pose_cam1, noisePrior);
|
||||
// graph2.addPrior(x2, w_Pose_cam2, noisePrior);
|
||||
//
|
||||
// typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
|
||||
//
|
||||
// bool verboseCheirality = true;
|
||||
//
|
||||
// graph2.push_back(ProjectionFactor(measurements_l1[0], model, x1, L(1), K2, false, verboseCheirality));
|
||||
// graph2.push_back(ProjectionFactor(measurements_l1[1], model, x2, L(1), K2, false, verboseCheirality));
|
||||
// graph2.push_back(ProjectionFactor(measurements_l1[2], model, x3, L(1), K2, false, verboseCheirality));
|
||||
//
|
||||
// graph2.push_back(ProjectionFactor(measurements_l2[0], model, x1, L(2), K2, false, verboseCheirality));
|
||||
// graph2.push_back(ProjectionFactor(measurements_l2[1], model, x2, L(2), K2, false, verboseCheirality));
|
||||
// graph2.push_back(ProjectionFactor(measurements_l2[2], model, x3, L(2), K2, false, verboseCheirality));
|
||||
//
|
||||
// graph2.push_back(ProjectionFactor(measurements_l3[0], model, x1, L(3), K2, false, verboseCheirality));
|
||||
// graph2.push_back(ProjectionFactor(measurements_l3[1], model, x2, L(3), K2, false, verboseCheirality));
|
||||
// graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
|
||||
//
|
||||
//// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
|
||||
// EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values), 1e-7);
|
||||
//
|
||||
// LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
|
||||
// Values result2 = optimizer2.optimize();
|
||||
// EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5);
|
||||
//
|
||||
//// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
|
||||
|
||||
}
|
||||
/* *************************************************************************
|
||||
|
|
Loading…
Reference in New Issue