changing MFAS to oops and refactoring
parent
90e7fb8229
commit
c1c8b0a1a3
|
|
@ -0,0 +1,138 @@
|
|||
#include <gtsam/sfm/MFAS.h>
|
||||
|
||||
using namespace gtsam;
|
||||
using std::pair;
|
||||
using std::vector;
|
||||
|
||||
MFAS::MFAS(const std::shared_ptr<vector<Key>> &nodes,
|
||||
const std::shared_ptr<TranslationEdges> &relativeTranslations,
|
||||
const Unit3 &projection_direction)
|
||||
: nodes_(nodes), relativeTranslations_(relativeTranslations),
|
||||
relativeTranslationsForWeights_(std::make_shared<TranslationEdges>()) {
|
||||
// iterate over edges and flip all edges that have negative weights,
|
||||
// while storing the magnitude of the weights.
|
||||
for (auto it = relativeTranslations->begin();
|
||||
it != relativeTranslations->end(); it++) {
|
||||
KeyPair edge = it->first;
|
||||
double weight = it->second.dot(projection_direction);
|
||||
if (weight < 0.0) {
|
||||
std::swap(edge.first, edge.second);
|
||||
weight *= -1;
|
||||
}
|
||||
positiveEdgeWeights_[edge] = weight;
|
||||
}
|
||||
}
|
||||
|
||||
MFAS::MFAS(const std::shared_ptr<std::vector<Key>> &nodes,
|
||||
const std::map<KeyPair, double> &edgeWeights) : nodes_(nodes),
|
||||
relativeTranslations_(std::make_shared<TranslationEdges>()),
|
||||
relativeTranslationsForWeights_(std::make_shared<
|
||||
TranslationEdges>()) {
|
||||
// similar to the above direction constructor, but here weights are
|
||||
// provided as input.
|
||||
for (auto it = edgeWeights.begin(); it != edgeWeights.end(); it++) {
|
||||
KeyPair edge = it->first;
|
||||
|
||||
// When constructed like this, we do not have access to the relative translations.
|
||||
// So, we store the unswapped edge in the relativeTranslationsForWeights_ map with a default
|
||||
// Unit3 value. This helps retain the original direction of the edge in the returned result
|
||||
// of computeOutlierWeights
|
||||
relativeTranslationsForWeights_->insert({edge, Unit3()});
|
||||
|
||||
double weight = it->second;
|
||||
if (weight < 0.0) {
|
||||
// change the direction of the edge to make weight positive
|
||||
std::swap(edge.first, edge.second);
|
||||
weight *= -1;
|
||||
}
|
||||
positiveEdgeWeights_[edge] = weight;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Key> MFAS::computeOrdering() {
|
||||
FastMap<Key, double> in_weights; // sum on weights of incoming edges for a node
|
||||
FastMap<Key, double> out_weights; // sum on weights of outgoing edges for a node
|
||||
FastMap<Key, vector<Key> > in_neighbors;
|
||||
FastMap<Key, vector<Key> > out_neighbors;
|
||||
|
||||
// populate neighbors and weights
|
||||
for (auto it = positiveEdgeWeights_.begin(); it != positiveEdgeWeights_.end(); it++) {
|
||||
const KeyPair &edge = it->first;
|
||||
in_weights[edge.second] += it->second;
|
||||
out_weights[edge.first] += it->second;
|
||||
in_neighbors[edge.second].push_back(edge.first);
|
||||
out_neighbors[edge.first].push_back(edge.second);
|
||||
}
|
||||
|
||||
// in each iteration, one node is appended to the ordered list
|
||||
while (orderedNodes_.size() < nodes_->size()) {
|
||||
|
||||
// finding the node with the max heuristic score
|
||||
Key choice;
|
||||
double max_score = 0.0;
|
||||
|
||||
for (const Key &node : *nodes_) {
|
||||
if (orderedPositions_.find(node) == orderedPositions_.end()) {
|
||||
// is this a source
|
||||
if (in_weights[node] < 1e-8) {
|
||||
choice = node;
|
||||
break;
|
||||
} else {
|
||||
double score = (out_weights[node] + 1) / (in_weights[node] + 1);
|
||||
if (score > max_score) {
|
||||
max_score = score;
|
||||
choice = node;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// find its inbrs, adjust their wout_deg
|
||||
for (auto it = in_neighbors[choice].begin();
|
||||
it != in_neighbors[choice].end(); ++it)
|
||||
out_weights[*it] -= positiveEdgeWeights_[KeyPair(*it, choice)];
|
||||
// find its onbrs, adjust their win_deg
|
||||
for (auto it = out_neighbors[choice].begin();
|
||||
it != out_neighbors[choice].end(); ++it)
|
||||
in_weights[*it] -= positiveEdgeWeights_[KeyPair(choice, *it)];
|
||||
|
||||
orderedPositions_[choice] = orderedNodes_.size();
|
||||
orderedNodes_.push_back(choice);
|
||||
}
|
||||
return orderedNodes_;
|
||||
}
|
||||
|
||||
std::map<KeyPair, double> MFAS::computeOutlierWeights() {
|
||||
// if ordering has not been computed yet
|
||||
if (orderedNodes_.size() != nodes_->size()) {
|
||||
computeOrdering();
|
||||
}
|
||||
// iterate over all edges
|
||||
// start and end iterators depend on whether we are using relativeTranslations_ or
|
||||
// relativeTranslationsForWeights_ to store the original edge directions
|
||||
TranslationEdges::iterator start, end;
|
||||
if (relativeTranslationsForWeights_->size() == 0) {
|
||||
start = relativeTranslations_->begin();
|
||||
end = relativeTranslations_->end();
|
||||
} else {
|
||||
start = relativeTranslationsForWeights_->begin();
|
||||
end = relativeTranslationsForWeights_->end();
|
||||
}
|
||||
|
||||
for (auto it = start; it != end; it++) {
|
||||
// relativeTranslations may have negative weight edges, we make sure all edges
|
||||
// are along the postive direction by flipping them if they are not.
|
||||
KeyPair edge = it->first;
|
||||
if (positiveEdgeWeights_.find(edge) == positiveEdgeWeights_.end()) {
|
||||
std::swap(edge.first, edge.second);
|
||||
}
|
||||
|
||||
// if the ordered position of nodes is not consistent with the edge
|
||||
// direction for consistency second should be greater than first
|
||||
if (orderedPositions_.at(edge.second) < orderedPositions_.at(edge.first)) {
|
||||
outlierWeights_[it->first] = std::abs(positiveEdgeWeights_[edge]);
|
||||
} else {
|
||||
outlierWeights_[it->first] = 0;
|
||||
}
|
||||
}
|
||||
return outlierWeights_;
|
||||
}
|
||||
|
|
@ -0,0 +1,107 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef __MFAS_H__
|
||||
#define __MFAS_H__
|
||||
|
||||
#include <gtsam/geometry/Unit3.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
// used to represent edges between two nodes in the graph
|
||||
using KeyPair = std::pair<Key, Key>;
|
||||
using TranslationEdges = std::map<KeyPair, Unit3>;
|
||||
|
||||
/*
|
||||
The MFAS class to solve a Minimum feedback arc set (MFAS)
|
||||
problem. We implement the solution from:
|
||||
Kyle Wilson and Noah Snavely, "Robust Global Translations with 1DSfM",
|
||||
Proceedings of the European Conference on Computer Vision, ECCV 2014
|
||||
|
||||
Given a weighted directed graph, the objective in a Minimum feedback arc set
|
||||
problem is to obtain a graph that does not contain any cycles by removing
|
||||
edges such that the total weight of removed edges is minimum.
|
||||
*/
|
||||
class MFAS {
|
||||
public:
|
||||
/*
|
||||
* @brief Construct from the nodes in a graph (points in 3D), edges
|
||||
* that are transation directions in 3D and the direction in
|
||||
* which edges are to be projected.
|
||||
* @param nodes Nodes in the graph
|
||||
* @param relativeTranslations translation directions between nodes
|
||||
* @param projectionDirection direction in which edges are to be projected
|
||||
*/
|
||||
MFAS(const std::shared_ptr<std::vector<Key>> &nodes,
|
||||
const std::shared_ptr<TranslationEdges> &relativeTranslations,
|
||||
const Unit3 &projectionDirection);
|
||||
|
||||
/*
|
||||
* Construct from the nodes in a graph and weighted directed edges
|
||||
* between the graph. Not recommended for any purpose other than unit testing.
|
||||
* The computeOutlierWeights method will return an empty output if this constructor
|
||||
* is used.
|
||||
* When used in a translation averaging context, these weights are obtained
|
||||
* by projecting edges in a particular direction.
|
||||
* @param nodes: Nodes in the graph
|
||||
* @param edgeWeights: weights of edges in the graph (map from edge to signed double)
|
||||
*/
|
||||
MFAS(const std::shared_ptr<std::vector<Key>> &nodes,
|
||||
const std::map<KeyPair, double> &edgeWeights);
|
||||
|
||||
/*
|
||||
* @brief Computes the "outlier weights" of the graph. We define the outlier weight
|
||||
* of a edge to be zero if the edge in an inlier and the magnitude of its edgeWeight
|
||||
* if it is an outlier. This function can only be used when constructing the
|
||||
* @return outlierWeights: map from an edge to its outlier weight.
|
||||
*/
|
||||
std::map<KeyPair, double> computeOutlierWeights();
|
||||
|
||||
/*
|
||||
* Computes the 1D MFAS ordering of nodes in the graph
|
||||
* @return orderedNodes: vector of nodes in the obtained order
|
||||
*/
|
||||
std::vector<Key> computeOrdering();
|
||||
|
||||
private:
|
||||
// pointer to nodes in the graph
|
||||
const std::shared_ptr<std::vector<Key>> nodes_;
|
||||
// pointer to translation edges (translation directions between two node points)
|
||||
const std::shared_ptr<TranslationEdges> relativeTranslations_;
|
||||
|
||||
// relative translations when the object is initialized without using the actual
|
||||
// relative translations, but with the weights from projecting in a certain
|
||||
// direction. This is used for unit testing, but not in practice.
|
||||
std::shared_ptr<TranslationEdges> relativeTranslationsForWeights_;
|
||||
|
||||
// edges with a direction such that all weights are positive
|
||||
// i.e, edges that originally had negative weights are flipped
|
||||
std::map<KeyPair, double> positiveEdgeWeights_;
|
||||
|
||||
// map from edges to their outlier weight
|
||||
std::map<KeyPair, double> outlierWeights_;
|
||||
|
||||
// nodes arranged in the MFAS order
|
||||
std::vector<Key> orderedNodes_;
|
||||
|
||||
// map from nodes to their position in the MFAS order
|
||||
// used to speed up computation (lookup) when computing outlierWeights_
|
||||
FastMap<Key, int> orderedPositions_;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
||||
#endif // __MFAS_H__
|
||||
|
|
@ -1,101 +0,0 @@
|
|||
/*
|
||||
This file defines functions used to solve a Minimum feedback arc set (MFAS)
|
||||
problem. This code was forked and modified from Kyle Wilson's repository at
|
||||
https://github.com/wilsonkl/SfM_Init.
|
||||
Copyright (c) 2014, Kyle Wilson
|
||||
All rights reserved.
|
||||
*/
|
||||
|
||||
#include <gtsam/sfm/mfas.h>
|
||||
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
using std::map;
|
||||
using std::pair;
|
||||
using std::set;
|
||||
using std::vector;
|
||||
|
||||
namespace gtsam {
|
||||
namespace mfas {
|
||||
|
||||
void flipNegEdges(vector<KeyPair> &edges, vector<double> &weights) {
|
||||
// now renumber the edges
|
||||
for (unsigned int i = 0; i < edges.size(); ++i) {
|
||||
if (weights[i] < 0.0) {
|
||||
Key tmp = edges[i].second;
|
||||
edges[i].second = edges[i].first;
|
||||
edges[i].first = tmp;
|
||||
weights[i] *= -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mfasRatio(const std::vector<KeyPair> &edges,
|
||||
const std::vector<double> &weights, const KeyVector &nodes,
|
||||
FastMap<Key, int> &ordered_positions) {
|
||||
// initialize data structures
|
||||
FastMap<Key, double> win_deg;
|
||||
FastMap<Key, double> wout_deg;
|
||||
FastMap<Key, vector<pair<int, double> > > inbrs;
|
||||
FastMap<Key, vector<pair<int, double> > > onbrs;
|
||||
|
||||
// stuff data structures
|
||||
for (unsigned int ii = 0; ii < edges.size(); ++ii) {
|
||||
int i = edges[ii].first;
|
||||
int j = edges[ii].second;
|
||||
double w = weights[ii];
|
||||
|
||||
win_deg[j] += w;
|
||||
wout_deg[i] += w;
|
||||
inbrs[j].push_back(pair<int, double>(i, w));
|
||||
onbrs[i].push_back(pair<int, double>(j, w));
|
||||
}
|
||||
|
||||
unsigned int ordered_count = 0;
|
||||
while (ordered_count < nodes.size()) {
|
||||
// choose an unchosen node
|
||||
Key choice;
|
||||
double max_score = 0.0;
|
||||
for (auto node : nodes) {
|
||||
if (ordered_positions.find(node) == ordered_positions.end()) {
|
||||
// is this a source
|
||||
if (win_deg[node] < 1e-8) {
|
||||
choice = node;
|
||||
break;
|
||||
} else {
|
||||
double score = (wout_deg[node] + 1) / (win_deg[node] + 1);
|
||||
if (score > max_score) {
|
||||
max_score = score;
|
||||
choice = node;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// find its inbrs, adjust their wout_deg
|
||||
for (auto it = inbrs[choice].begin(); it != inbrs[choice].end(); ++it)
|
||||
wout_deg[it->first] -= it->second;
|
||||
// find its onbrs, adjust their win_deg
|
||||
for (auto it = onbrs[choice].begin(); it != onbrs[choice].end(); ++it)
|
||||
win_deg[it->first] -= it->second;
|
||||
|
||||
ordered_positions[choice] = ordered_count++;
|
||||
}
|
||||
}
|
||||
|
||||
void outlierWeights(const std::vector<KeyPair> &edges,
|
||||
const std::vector<double> &weight,
|
||||
const FastMap<Key, int> &ordered_positions,
|
||||
FastMap<KeyPair, double> &outlier_weights) {
|
||||
// find the outlier edges
|
||||
for (unsigned int i = 0; i < edges.size(); ++i) {
|
||||
int x0 = ordered_positions.at(edges[i].first);
|
||||
int x1 = ordered_positions.at(edges[i].second);
|
||||
if ((x1 - x0) * weight[i] < 0)
|
||||
outlier_weights[edges[i]] += weight[i] > 0 ? weight[i] : -weight[i];
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mfas
|
||||
} // namespace gtsam
|
||||
|
|
@ -1,65 +0,0 @@
|
|||
/*
|
||||
This file defines functions used to solve a Minimum feedback arc set (MFAS)
|
||||
problem. This code was forked and modified from Kyle Wilson's repository at
|
||||
https://github.com/wilsonkl/SfM_Init.
|
||||
Copyright (c) 2014, Kyle Wilson
|
||||
All rights reserved.
|
||||
|
||||
Given a weighted directed graph, the objective in a Minimum feedback arc set
|
||||
problem is to obtain a graph that does not contain any cycles by removing
|
||||
edges such that the total weight of removed edges is minimum.
|
||||
*/
|
||||
#ifndef __MFAS_H__
|
||||
#define __MFAS_H__
|
||||
|
||||
#include <gtsam/inference/Key.h>
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using KeyPair = std::pair<Key, Key>;
|
||||
|
||||
namespace mfas {
|
||||
|
||||
/*
|
||||
* Given a vector of KeyPairs that constitutes edges in a graph and the weights
|
||||
* corresponding to these edges, this function changes all the weights to
|
||||
* positive numbers by flipping the direction of the edges that have a negative
|
||||
* weight. The changes are made in place.
|
||||
* @param edges reference to vector of KeyPairs
|
||||
* @param weights weights corresponding to edges
|
||||
*/
|
||||
void flipNegEdges(std::vector<KeyPair> &edges, std::vector<double> &weights);
|
||||
|
||||
/*
|
||||
* Computes the MFAS ordering, ie an ordering of the nodes in the graph such
|
||||
* that the source of any edge appears before its destination in the ordering.
|
||||
* The weight of edges that are removed to obtain this ordering is minimized.
|
||||
* @param edges: edges in the graph
|
||||
* @param weights: weights corresponding to the edges (have to be positive)
|
||||
* @param nodes: nodes in the graph
|
||||
* @param ordered_positions: map from node to position in the ordering (0
|
||||
* indexed)
|
||||
*/
|
||||
void mfasRatio(const std::vector<KeyPair> &edges,
|
||||
const std::vector<double> &weights, const KeyVector &nodes,
|
||||
FastMap<Key, int> &ordered_positions);
|
||||
|
||||
/*
|
||||
* Returns the weights of edges that are not consistent with the input ordering.
|
||||
* @param edges in the graph
|
||||
* @param weights of the edges in the graph
|
||||
* @param ordered_positions: ordering (obtained from MFAS solution)
|
||||
* @param outlier_weights: reference to a map from edges to their "outlier
|
||||
* weights"
|
||||
*/
|
||||
void outlierWeights(const std::vector<KeyPair> &edges,
|
||||
const std::vector<double> &weight,
|
||||
const FastMap<Key, int> &ordered_positions,
|
||||
FastMap<KeyPair, double> &outlier_weights);
|
||||
|
||||
} // namespace mfas
|
||||
} // namespace gtsam
|
||||
#endif // __MFAS_H__
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
#include <gtsam/sfm/mfas.h>
|
||||
|
||||
#include <gtsam/sfm/MFAS.h>
|
||||
#include <iostream>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
|
|
@ -8,75 +8,52 @@ using namespace gtsam;
|
|||
/* We (partially) use the example from the paper on 1dsfm
|
||||
* (https://research.cs.cornell.edu/1dsfm/docs/1DSfM_ECCV14.pdf, Fig 1, Page 5)
|
||||
* for the unit tests here. The only change is that we leave out node 4 and use
|
||||
* only nodes 0-3. This not only makes the test easier to understand but also
|
||||
* only nodes 0-3. This makes the test easier to understand and also
|
||||
* avoids an ambiguity in the ground truth ordering that arises due to
|
||||
* insufficient edges in the geaph. */
|
||||
* insufficient edges in the geaph when using the 4th node. */
|
||||
|
||||
// edges in the graph - last edge from node 3 to 0 is an outlier
|
||||
vector<KeyPair> graph = {make_pair(3, 2), make_pair(0, 1), make_pair(3, 1),
|
||||
make_pair(1, 2), make_pair(0, 2), make_pair(3, 0)};
|
||||
// nodes in the graph
|
||||
KeyVector nodes = {Key(0), Key(1), Key(2), Key(3)};
|
||||
vector<Key> nodes = {Key(0), Key(1), Key(2), Key(3)};
|
||||
// weights from projecting in direction-1 (bad direction, outlier accepted)
|
||||
vector<double> weights1 = {2, 1.5, 0.5, 0.25, 1, 0.75};
|
||||
// weights from projecting in direction-2 (good direction, outlier rejected)
|
||||
vector<double> weights2 = {0.5, 0.75, -0.25, 0.75, 1, 0.5};
|
||||
|
||||
// Testing the flipNegEdges function for weights1
|
||||
TEST(MFAS, FlipNegEdges) {
|
||||
vector<KeyPair> graph_copy = graph;
|
||||
vector<double> weights1_positive = weights1;
|
||||
mfas::flipNegEdges(graph_copy, weights1_positive);
|
||||
|
||||
// resulting graph and edges must be of same size
|
||||
EXPECT_LONGS_EQUAL(graph_copy.size(), graph.size());
|
||||
EXPECT_LONGS_EQUAL(weights1_positive.size(), weights1.size());
|
||||
|
||||
for (unsigned int i = 0; i < weights1.size(); i++) {
|
||||
if (weights1[i] < 0) {
|
||||
// if original weight was negative, edges must be flipped and new weight
|
||||
// must be positive
|
||||
EXPECT_DOUBLES_EQUAL(weights1_positive[i], -weights1[i], 1e-6);
|
||||
EXPECT(graph_copy[i].first == graph[i].second &&
|
||||
graph_copy[i].second == graph[i].first);
|
||||
} else {
|
||||
// unchanged if original weight was positive
|
||||
EXPECT_DOUBLES_EQUAL(weights1_positive[i], weights1[i], 1e-6);
|
||||
EXPECT(graph_copy[i].first == graph[i].first &&
|
||||
graph_copy[i].second == graph[i].second);
|
||||
}
|
||||
// helper function to obtain map from keypairs to weights from the
|
||||
// vector representations
|
||||
std::map<KeyPair, double> getEdgeWeights(const vector<KeyPair> &graph,
|
||||
const vector<double> &weights) {
|
||||
std::map<KeyPair, double> edgeWeights;
|
||||
for (size_t i = 0; i < graph.size(); i++) {
|
||||
edgeWeights[graph[i]] = weights[i];
|
||||
}
|
||||
cout << "returning edge weights " << edgeWeights.size() << endl;
|
||||
return edgeWeights;
|
||||
}
|
||||
|
||||
// test the ordering and the outlierWeights function using weights2 - outlier
|
||||
// edge is rejected when projected in a direction that gives weights2
|
||||
TEST(MFAS, OrderingWeights2) {
|
||||
vector<KeyPair> graph_copy = graph;
|
||||
vector<double> weights2_positive = weights2;
|
||||
mfas::flipNegEdges(graph_copy, weights2_positive);
|
||||
FastMap<Key, int> ordered_positions;
|
||||
// compute ordering from positive edge weights
|
||||
mfas::mfasRatio(graph_copy, weights2_positive, nodes, ordered_positions);
|
||||
MFAS mfas_obj(make_shared<vector<Key>>(nodes), getEdgeWeights(graph, weights2));
|
||||
|
||||
// expected ordering in this example
|
||||
FastMap<Key, int> gt_ordered_positions;
|
||||
gt_ordered_positions[0] = 0;
|
||||
gt_ordered_positions[1] = 1;
|
||||
gt_ordered_positions[3] = 2;
|
||||
gt_ordered_positions[2] = 3;
|
||||
vector<Key> ordered_nodes = mfas_obj.computeOrdering();
|
||||
|
||||
// ground truth (expected) ordering in this example
|
||||
vector<Key> gt_ordered_nodes = {0, 1, 3, 2};
|
||||
|
||||
// check if the expected ordering is obtained
|
||||
for (auto node : nodes) {
|
||||
EXPECT_LONGS_EQUAL(gt_ordered_positions[node], ordered_positions[node]);
|
||||
for (size_t i = 0; i < ordered_nodes.size(); i++) {
|
||||
EXPECT_LONGS_EQUAL(gt_ordered_nodes[i], ordered_nodes[i]);
|
||||
}
|
||||
|
||||
// testing the outlierWeights method
|
||||
FastMap<KeyPair, double> outlier_weights;
|
||||
mfas::outlierWeights(graph_copy, weights2_positive, gt_ordered_positions,
|
||||
outlier_weights);
|
||||
map<KeyPair, double> outlier_weights = mfas_obj.computeOutlierWeights();
|
||||
|
||||
// since edge between 3 and 0 is inconsistent with the ordering, it must have
|
||||
// positive outlier weight, other outlier weights must be zero
|
||||
for (auto &edge : graph_copy) {
|
||||
for (auto &edge : graph) {
|
||||
if (edge == make_pair(Key(3), Key(0)) ||
|
||||
edge == make_pair(Key(0), Key(3))) {
|
||||
EXPECT_DOUBLES_EQUAL(outlier_weights[edge], 0.5, 1e-6);
|
||||
|
|
@ -87,33 +64,25 @@ TEST(MFAS, OrderingWeights2) {
|
|||
}
|
||||
|
||||
// test the ordering function and the outlierWeights method using
|
||||
// weights2 (outlier edge is accepted when projected in a direction that
|
||||
// produces weights2)
|
||||
// weights1 (outlier edge is accepted when projected in a direction that
|
||||
// produces weights1)
|
||||
TEST(MFAS, OrderingWeights1) {
|
||||
vector<KeyPair> graph_copy = graph;
|
||||
vector<double> weights1_positive = weights1;
|
||||
mfas::flipNegEdges(graph_copy, weights1_positive);
|
||||
FastMap<Key, int> ordered_positions;
|
||||
// compute ordering from positive edge weights
|
||||
mfas::mfasRatio(graph_copy, weights1_positive, nodes, ordered_positions);
|
||||
MFAS mfas_obj(make_shared<vector<Key>>(nodes), getEdgeWeights(graph, weights1));
|
||||
|
||||
// expected "ground truth" ordering in this example
|
||||
FastMap<Key, int> gt_ordered_positions;
|
||||
gt_ordered_positions[3] = 0;
|
||||
gt_ordered_positions[0] = 1;
|
||||
gt_ordered_positions[1] = 2;
|
||||
gt_ordered_positions[2] = 3;
|
||||
vector<Key> ordered_nodes = mfas_obj.computeOrdering();
|
||||
|
||||
// "ground truth" expected ordering in this example
|
||||
vector<Key> gt_ordered_nodes = {3, 0, 1, 2};
|
||||
|
||||
// check if the expected ordering is obtained
|
||||
for (auto node : nodes) {
|
||||
EXPECT_LONGS_EQUAL(gt_ordered_positions[node], ordered_positions[node]);
|
||||
for (size_t i = 0; i < ordered_nodes.size(); i++) {
|
||||
EXPECT_LONGS_EQUAL(gt_ordered_nodes[i], ordered_nodes[i]);
|
||||
}
|
||||
|
||||
// since all edges (including the outlier) are consistent with this ordering,
|
||||
// all outlier_weights must be zero
|
||||
FastMap<KeyPair, double> outlier_weights;
|
||||
mfas::outlierWeights(graph, weights1_positive, gt_ordered_positions,
|
||||
outlier_weights);
|
||||
map<KeyPair, double> outlier_weights = mfas_obj.computeOutlierWeights();
|
||||
|
||||
// since edge between 3 and 0 is inconsistent with the ordering, it must have
|
||||
// positive outlier weight, other outlier weights must be zero
|
||||
for (auto &edge : graph) {
|
||||
EXPECT_DOUBLES_EQUAL(outlier_weights[edge], 0, 1e-6);
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue