add an unit test for SFMFactor with Cal3BundlerCamera
parent
50965ee7d9
commit
c11e2b30e3
|
@ -48,7 +48,7 @@ check_PROGRAMS += tests/testPose3Factor tests/testPose3Values tests/testPose3SLA
|
|||
# Visual SLAM
|
||||
headers += GeneralSFMFactor.h
|
||||
sources += visualSLAM.cpp
|
||||
check_PROGRAMS += tests/testVSLAMFactor tests/testVSLAMGraph tests/testVSLAMValues tests/testGeneralSFMFactor
|
||||
check_PROGRAMS += tests/testVSLAMFactor tests/testVSLAMGraph tests/testVSLAMValues tests/testGeneralSFMFactor tests/testGeneralSFMFactor_Cal3Bundler
|
||||
|
||||
# StereoFactor
|
||||
headers += StereoFactor.h
|
||||
|
|
|
@ -0,0 +1,405 @@
|
|||
/*
|
||||
* testGeneralSFMFactor.cpp
|
||||
*
|
||||
* Created on: Dec 27, 2010
|
||||
* Author: nikai
|
||||
* Description: unit tests for GeneralSFMFactor
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
using namespace boost;
|
||||
|
||||
#define GTSAM_MAGIC_KEY
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimizer-inl.h>
|
||||
#include <gtsam/inference/graph-inl.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/TupleValues-inl.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
|
||||
#include <gtsam/geometry/GeneralCameraT.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
typedef Cal3BundlerCamera GeneralCamera;
|
||||
typedef TypedSymbol<GeneralCamera, 'x'> CameraKey;
|
||||
typedef TypedSymbol<Point3, 'l'> PointKey;
|
||||
typedef LieValues<CameraKey> CameraConfig;
|
||||
typedef LieValues<PointKey> PointConfig;
|
||||
typedef TupleValues2<CameraConfig, PointConfig> Values;
|
||||
typedef GeneralSFMFactor<Values, CameraKey, PointKey> Projection;
|
||||
typedef NonlinearEquality<Values, CameraKey> CameraConstraint;
|
||||
typedef NonlinearEquality<Values, PointKey> Point3Constraint;
|
||||
|
||||
class Graph: public NonlinearFactorGraph<Values> {
|
||||
public:
|
||||
void addMeasurement(const CameraKey& i, const PointKey& j, const Point2& z, const SharedGaussian& model) {
|
||||
push_back(boost::make_shared<Projection>(z, model, i, j));
|
||||
}
|
||||
|
||||
void addCameraConstraint(int j, const GeneralCamera& p) {
|
||||
boost::shared_ptr<CameraConstraint> factor(new CameraConstraint(j, p));
|
||||
push_back(factor);
|
||||
}
|
||||
|
||||
void addPoint3Constraint(int j, const Point3& p) {
|
||||
boost::shared_ptr<Point3Constraint> factor(new Point3Constraint(j, p));
|
||||
push_back(factor);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
double getGaussian()
|
||||
{
|
||||
double S,V1,V2;
|
||||
// Use Box-Muller method to create gauss noise from uniform noise
|
||||
do
|
||||
{
|
||||
double U1 = rand() / (double)(RAND_MAX);
|
||||
double U2 = rand() / (double)(RAND_MAX);
|
||||
V1 = 2 * U1 - 1; /* V1=[-1,1] */
|
||||
V2 = 2 * U2 - 1; /* V2=[-1,1] */
|
||||
S = V1 * V1 + V2 * V2;
|
||||
} while(S>=1);
|
||||
return sqrt(-2.0f * (double)log(S) / S) * V1;
|
||||
}
|
||||
|
||||
typedef NonlinearOptimizer<Graph,Values> Optimizer;
|
||||
|
||||
const SharedGaussian sigma1(noiseModel::Unit::Create(1));
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GeneralSFMFactor, equals )
|
||||
{
|
||||
// Create two identical factors and make sure they're equal
|
||||
Vector z = Vector_(2,323.,240.);
|
||||
const int cameraFrameNumber=1, landmarkNumber=1;
|
||||
const SharedGaussian sigma(noiseModel::Unit::Create(1));
|
||||
boost::shared_ptr<Projection>
|
||||
factor1(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
|
||||
|
||||
boost::shared_ptr<Projection>
|
||||
factor2(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
|
||||
|
||||
CHECK(assert_equal(*factor1, *factor2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GeneralSFMFactor, error ) {
|
||||
Point2 z(3.,0.);
|
||||
const int cameraFrameNumber=1, landmarkNumber=1;
|
||||
const SharedGaussian sigma(noiseModel::Unit::Create(1));
|
||||
boost::shared_ptr<Projection>
|
||||
factor(new Projection(z, sigma, cameraFrameNumber, landmarkNumber));
|
||||
// For the following configuration, the factor predicts 320,240
|
||||
Values values;
|
||||
Rot3 R;
|
||||
Point3 t1(0,0,-6);
|
||||
Pose3 x1(R,t1);
|
||||
values.insert(1, GeneralCamera(x1));
|
||||
Point3 l1; values.insert(1, l1);
|
||||
CHECK(assert_equal(Vector_(2, -3.0, 0.0), factor->unwhitenedError(values)));
|
||||
}
|
||||
|
||||
|
||||
static const double baseline = 5.0 ;
|
||||
|
||||
vector<Point3> genPoint3() {
|
||||
const double z = 5;
|
||||
vector<Point3> L ;
|
||||
L.push_back(Point3 (-1.0,-1.0, z));
|
||||
L.push_back(Point3 (-1.0, 1.0, z));
|
||||
L.push_back(Point3 ( 1.0, 1.0, z));
|
||||
L.push_back(Point3 ( 1.0,-1.0, z));
|
||||
L.push_back(Point3 (-1.5,-1.5, 1.5*z));
|
||||
L.push_back(Point3 (-1.5, 1.5, 1.5*z));
|
||||
L.push_back(Point3 ( 1.5, 1.5, 1.5*z));
|
||||
L.push_back(Point3 ( 1.5,-1.5, 1.5*z));
|
||||
L.push_back(Point3 (-2.0,-2.0, 2*z));
|
||||
L.push_back(Point3 (-2.0, 2.0, 2*z));
|
||||
L.push_back(Point3 ( 2.0, 2.0, 2*z));
|
||||
L.push_back(Point3 ( 2.0,-2.0, 2*z));
|
||||
return L ;
|
||||
}
|
||||
|
||||
vector<GeneralCamera> genCameraDefaultCalibration() {
|
||||
vector<GeneralCamera> X ;
|
||||
X.push_back(GeneralCamera(Pose3(eye(3),Point3(-baseline/2.0, 0.0, 0.0))));
|
||||
X.push_back(GeneralCamera(Pose3(eye(3),Point3( baseline/2.0, 0.0, 0.0))));
|
||||
return X ;
|
||||
}
|
||||
|
||||
vector<GeneralCamera> genCameraVariableCalibration() {
|
||||
const Cal3Bundler K(500,1e-3,1e-3);
|
||||
vector<GeneralCamera> X ;
|
||||
X.push_back(GeneralCamera(Pose3(eye(3),Point3(-baseline/2.0, 0.0, 0.0)), K));
|
||||
X.push_back(GeneralCamera(Pose3(eye(3),Point3( baseline/2.0, 0.0, 0.0)), K));
|
||||
return X ;
|
||||
}
|
||||
|
||||
shared_ptr<Ordering> getOrdering(const vector<GeneralCamera>& X, const vector<Point3>& L) {
|
||||
list<Symbol> keys;
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) keys.push_back(Symbol('l', i)) ;
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i ) keys.push_back(Symbol('x', i)) ;
|
||||
shared_ptr<Ordering> ordering(new Ordering(keys));
|
||||
return ordering ;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GeneralSFMFactor, optimize_defaultK ) {
|
||||
|
||||
vector<Point3> L = genPoint3();
|
||||
vector<GeneralCamera> X = genCameraDefaultCalibration();
|
||||
|
||||
// add measurement with noise
|
||||
shared_ptr<Graph> graph(new Graph());
|
||||
for ( size_t j = 0 ; j < X.size() ; ++j) {
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i) {
|
||||
Point2 pt = X[j].project(L[i]) ;
|
||||
graph->addMeasurement(j, i, pt, sigma1);
|
||||
}
|
||||
}
|
||||
|
||||
const size_t nMeasurements = X.size()*L.size() ;
|
||||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
}
|
||||
|
||||
graph->addCameraConstraint(0, X[0]);
|
||||
|
||||
// Create an ordering of the variables
|
||||
shared_ptr<Ordering> ordering = getOrdering(X,L);
|
||||
//graph->print("graph") ; values->print("values") ;
|
||||
NonlinearOptimizationParameters::sharedThis params (
|
||||
new NonlinearOptimizationParameters(1e-5, 1e-5, 0.0, 100, 1e-5, 10, NonlinearOptimizationParameters::SILENT));
|
||||
Optimizer optimizer(graph, values, ordering, params);
|
||||
//cout << "optimize_defaultK::" << endl ;
|
||||
//cout << "before optimization, error is " << optimizer.error() << endl;
|
||||
Optimizer optimizer2 = optimizer.levenbergMarquardt();
|
||||
//cout << "after optimization, error is " << optimizer2.error() << endl;
|
||||
//optimizer2.values()->print("optimized") ;
|
||||
CHECK(optimizer2.error() < 0.5 * 1e-5 * nMeasurements);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GeneralSFMFactor, optimize_varK_SingleMeasurementError ) {
|
||||
vector<Point3> L = genPoint3();
|
||||
vector<GeneralCamera> X = genCameraVariableCalibration();
|
||||
// add measurement with noise
|
||||
shared_ptr<Graph> graph(new Graph());
|
||||
for ( size_t j = 0 ; j < X.size() ; ++j) {
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i) {
|
||||
Point2 pt = X[j].project(L[i]) ;
|
||||
graph->addMeasurement(j, i, pt, sigma1);
|
||||
}
|
||||
}
|
||||
|
||||
const size_t nMeasurements = X.size()*L.size() ;
|
||||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
|
||||
// add noise only to the first landmark
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
if ( i == 0 ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
}
|
||||
else {
|
||||
values->insert(i, L[i]) ;
|
||||
}
|
||||
}
|
||||
|
||||
graph->addCameraConstraint(0, X[0]);
|
||||
const double reproj_error = 1e-5;
|
||||
|
||||
shared_ptr<Ordering> ordering = getOrdering(X,L);
|
||||
NonlinearOptimizationParameters::sharedThis params (
|
||||
new NonlinearOptimizationParameters(1e-5, 1e-5, 0.0, 100, 1e-5, 10, NonlinearOptimizationParameters::SILENT));
|
||||
Optimizer optimizer(graph, values, ordering, params);
|
||||
//cout << "optimize_varK_SingleMeasurementError::" << endl ;
|
||||
//cout << "before optimization, error is " << optimizer.error() << endl;
|
||||
Optimizer optimizer2 = optimizer.levenbergMarquardt();
|
||||
//cout << "after optimization, error is " << optimizer2.error() << endl;
|
||||
CHECK(optimizer2.error() < 0.5 * reproj_error * nMeasurements);
|
||||
}
|
||||
|
||||
TEST( GeneralSFMFactor, optimize_varK_FixCameras ) {
|
||||
|
||||
vector<Point3> L = genPoint3();
|
||||
vector<GeneralCamera> X = genCameraVariableCalibration();
|
||||
|
||||
// add measurement with noise
|
||||
const double noise = baseline*0.1;
|
||||
shared_ptr<Graph> graph(new Graph());
|
||||
for ( size_t j = 0 ; j < X.size() ; ++j) {
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i) {
|
||||
Point2 pt = X[j].project(L[i]) ;
|
||||
graph->addMeasurement(j, i, pt, sigma1);
|
||||
}
|
||||
}
|
||||
|
||||
const size_t nMeasurements = L.size()*X.size();
|
||||
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
//Point3 pt(L[i].x(), L[i].y(), L[i].z());
|
||||
values->insert(i, pt) ;
|
||||
}
|
||||
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
graph->addCameraConstraint(i, X[i]);
|
||||
|
||||
const double reproj_error = 1e-5 ;
|
||||
|
||||
shared_ptr<Ordering> ordering = getOrdering(X,L);
|
||||
NonlinearOptimizationParameters::sharedThis params (
|
||||
new NonlinearOptimizationParameters(1e-5, 1e-5, 0.0, 100, 1e-3, 10, NonlinearOptimizationParameters::SILENT));
|
||||
Optimizer optimizer(graph, values, ordering, params);
|
||||
|
||||
//cout << "optimize_varK_FixCameras::" << endl ;
|
||||
//cout << "before optimization, error is " << optimizer.error() << endl;
|
||||
Optimizer optimizer2 = optimizer.levenbergMarquardt();
|
||||
//cout << "after optimization, error is " << optimizer2.error() << endl;
|
||||
CHECK(optimizer2.error() < 0.5 * reproj_error * nMeasurements);
|
||||
}
|
||||
|
||||
|
||||
TEST( GeneralSFMFactor, optimize_varK_FixLandmarks ) {
|
||||
|
||||
vector<Point3> L = genPoint3();
|
||||
vector<GeneralCamera> X = genCameraVariableCalibration();
|
||||
|
||||
// add measurement with noise
|
||||
shared_ptr<Graph> graph(new Graph());
|
||||
for ( size_t j = 0 ; j < X.size() ; ++j) {
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i) {
|
||||
Point2 pt = X[j].project(L[i]) ;
|
||||
graph->addMeasurement(j, i, pt, sigma1);
|
||||
}
|
||||
}
|
||||
|
||||
const size_t nMeasurements = L.size()*X.size();
|
||||
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i ) {
|
||||
const double
|
||||
rot_noise = 1e-5, trans_noise = 1e-3,
|
||||
focal_noise = 1, distort_noise = 1e-3;
|
||||
if ( i == 0 ) {
|
||||
values->insert((int)i, X[i]) ;
|
||||
}
|
||||
else {
|
||||
|
||||
Vector delta = Vector_(9,
|
||||
rot_noise, rot_noise, rot_noise, // rotation
|
||||
trans_noise, trans_noise, trans_noise, // translation
|
||||
focal_noise, distort_noise, distort_noise // f, k1, k2
|
||||
) ;
|
||||
values->insert((int)i, X[i].expmap(delta)) ;
|
||||
}
|
||||
}
|
||||
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
values->insert(i, L[i]) ;
|
||||
}
|
||||
|
||||
// fix X0 and all landmarks, allow only the X[1] to move
|
||||
graph->addCameraConstraint(0, X[0]);
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i )
|
||||
graph->addPoint3Constraint(i, L[i]);
|
||||
|
||||
const double reproj_error = 1e-5 ;
|
||||
|
||||
shared_ptr<Ordering> ordering = getOrdering(X,L);
|
||||
NonlinearOptimizationParameters::sharedThis params (
|
||||
new NonlinearOptimizationParameters(1e-5, 1e-5, 0.0, 100, 1e-3, 10, NonlinearOptimizationParameters::SILENT));
|
||||
// new NonlinearOptimizationParameters(1e-7, 1e-7, 0.0, 100, 1e-5, 10, NonlinearOptimizationParameters::TRYDELTA));
|
||||
Optimizer optimizer(graph, values, ordering, params);
|
||||
|
||||
//cout << "optimize_varK_FixLandmarks::" << endl ;
|
||||
//cout << "before optimization, error is " << optimizer.error() << endl;
|
||||
Optimizer optimizer2 = optimizer.levenbergMarquardt();
|
||||
//cout << "after optimization, error is " << optimizer2.error() << endl;
|
||||
CHECK(optimizer2.error() < 0.5 * reproj_error * nMeasurements);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GeneralSFMFactor, optimize_varK_BA ) {
|
||||
vector<Point3> L = genPoint3();
|
||||
vector<GeneralCamera> X = genCameraVariableCalibration();
|
||||
|
||||
// add measurement with noise
|
||||
shared_ptr<Graph> graph(new Graph());
|
||||
for ( size_t j = 0 ; j < X.size() ; ++j) {
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i) {
|
||||
Point2 pt = X[j].project(L[i]) ;
|
||||
graph->addMeasurement(j, i, pt, sigma1);
|
||||
}
|
||||
}
|
||||
|
||||
const size_t nMeasurements = X.size()*L.size() ;
|
||||
|
||||
// add initial
|
||||
const double noise = baseline*0.1;
|
||||
boost::shared_ptr<Values> values(new Values);
|
||||
for ( size_t i = 0 ; i < X.size() ; ++i )
|
||||
values->insert((int)i, X[i]) ;
|
||||
|
||||
// add noise only to the first landmark
|
||||
for ( size_t i = 0 ; i < L.size() ; ++i ) {
|
||||
Point3 pt(L[i].x()+noise*getGaussian(),
|
||||
L[i].y()+noise*getGaussian(),
|
||||
L[i].z()+noise*getGaussian());
|
||||
values->insert(i, pt) ;
|
||||
}
|
||||
|
||||
graph->addCameraConstraint(0, X[0]);
|
||||
const double reproj_error = 1e-5 ;
|
||||
|
||||
shared_ptr<Ordering> ordering = getOrdering(X,L);
|
||||
NonlinearOptimizationParameters::sharedThis params (
|
||||
new NonlinearOptimizationParameters(1e-5, 1e-5, 0.0, 100, 1e-5, 10, NonlinearOptimizationParameters::SILENT));
|
||||
Optimizer optimizer(graph, values, ordering, params);
|
||||
|
||||
//cout << "optimize_varK_BA::" << endl ;
|
||||
//cout << "before optimization, error is " << optimizer.error() << endl;
|
||||
Optimizer optimizer2 = optimizer.levenbergMarquardt();
|
||||
//cout << "after optimization, error is " << optimizer2.error() << endl;
|
||||
CHECK(optimizer2.error() < 0.5 * reproj_error * nMeasurements);
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
Loading…
Reference in New Issue