Created implementation file for NonlinearFactor and moved non-templated code there
parent
ce53346a9e
commit
c01c756d69
|
@ -0,0 +1,141 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file NonlinearFactor.cpp
|
||||
* @brief Nonlinear Factor base classes
|
||||
* @author Frank Dellaert
|
||||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <boost/make_shared.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
void NonlinearFactor::print(const std::string& s,
|
||||
const KeyFormatter& keyFormatter) const {
|
||||
std::cout << s << " keys = { ";
|
||||
BOOST_FOREACH(Key key, this->keys()) {
|
||||
std::cout << keyFormatter(key) << " ";
|
||||
}
|
||||
std::cout << "}" << std::endl;
|
||||
}
|
||||
|
||||
bool NonlinearFactor::equals(const NonlinearFactor& f, double tol) const {
|
||||
return Base::equals(f);
|
||||
}
|
||||
|
||||
NonlinearFactor::shared_ptr NonlinearFactor::rekey(
|
||||
const std::map<Key, Key>& rekey_mapping) const {
|
||||
shared_ptr new_factor = clone();
|
||||
for (size_t i = 0; i < new_factor->size(); ++i) {
|
||||
Key& cur_key = new_factor->keys()[i];
|
||||
std::map<Key, Key>::const_iterator mapping = rekey_mapping.find(cur_key);
|
||||
if (mapping != rekey_mapping.end())
|
||||
cur_key = mapping->second;
|
||||
}
|
||||
return new_factor;
|
||||
}
|
||||
|
||||
NonlinearFactor::shared_ptr NonlinearFactor::rekey(
|
||||
const std::vector<Key>& new_keys) const {
|
||||
assert(new_keys.size() == this->keys().size());
|
||||
shared_ptr new_factor = clone();
|
||||
new_factor->keys() = new_keys;
|
||||
return new_factor;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
void NoiseModelFactor::print(const std::string& s,
|
||||
const KeyFormatter& keyFormatter) const {
|
||||
Base::print(s, keyFormatter);
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
}
|
||||
|
||||
bool NoiseModelFactor::equals(const NonlinearFactor& f, double tol) const {
|
||||
const NoiseModelFactor* e = dynamic_cast<const NoiseModelFactor*>(&f);
|
||||
return e && Base::equals(f, tol)
|
||||
&& ((!noiseModel_ && !e->noiseModel_)
|
||||
|| (noiseModel_ && e->noiseModel_
|
||||
&& noiseModel_->equals(*e->noiseModel_, tol)));
|
||||
}
|
||||
|
||||
Vector NoiseModelFactor::whitenedError(const Values& c) const {
|
||||
const Vector unwhitenedErrorVec = unwhitenedError(c);
|
||||
if ((size_t) unwhitenedErrorVec.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument(
|
||||
"This factor was created with a NoiseModel of incorrect dimension.");
|
||||
return noiseModel_->whiten(unwhitenedErrorVec);
|
||||
}
|
||||
|
||||
double NoiseModelFactor::error(const Values& c) const {
|
||||
if (this->active(c)) {
|
||||
const Vector unwhitenedErrorVec = unwhitenedError(c);
|
||||
if ((size_t) unwhitenedErrorVec.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument(
|
||||
"This factor was created with a NoiseModel of incorrect dimension.");
|
||||
return 0.5 * noiseModel_->distance(unwhitenedErrorVec);
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
boost::shared_ptr<GaussianFactor> NoiseModelFactor::linearize(
|
||||
const Values& x) const {
|
||||
|
||||
// Only linearize if the factor is active
|
||||
if (!this->active(x))
|
||||
return boost::shared_ptr<JacobianFactor>();
|
||||
|
||||
// Call evaluate error to get Jacobians and RHS vector b
|
||||
std::vector<Matrix> A(this->size());
|
||||
Vector b = -unwhitenedError(x, A);
|
||||
|
||||
// If a noiseModel is given, whiten the corresponding system now
|
||||
if (noiseModel_) {
|
||||
if ((size_t) b.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument(
|
||||
"This factor was created with a NoiseModel of incorrect dimension.");
|
||||
this->noiseModel_->WhitenSystem(A, b);
|
||||
}
|
||||
|
||||
// Fill in terms, needed to create JacobianFactor below
|
||||
std::vector<std::pair<Key, Matrix> > terms(this->size());
|
||||
for (size_t j = 0; j < this->size(); ++j) {
|
||||
terms[j].first = this->keys()[j];
|
||||
terms[j].second.swap(A[j]);
|
||||
}
|
||||
|
||||
// TODO pass unwhitened + noise model to Gaussian factor
|
||||
// For now, only linearized constrained factors have noise model at linear level!!!
|
||||
if (noiseModel_) {
|
||||
noiseModel::Constrained::shared_ptr constrained =
|
||||
boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
|
||||
if (constrained) {
|
||||
// Create a factor of reduced row dimension d_
|
||||
size_t d_ = terms[0].second.rows() - constrained->dim();
|
||||
Vector zero_ = zero(d_);
|
||||
Vector b_ = concatVectors(2, &b, &zero_);
|
||||
Constrained::shared_ptr model = constrained->unit(d_);
|
||||
return boost::make_shared<JacobianFactor>(terms, b_, model);
|
||||
} else
|
||||
return GaussianFactor::shared_ptr(new JacobianFactor(terms, b));
|
||||
} else
|
||||
return GaussianFactor::shared_ptr(new JacobianFactor(terms, b));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
} // \namespace gtsam
|
|
@ -43,12 +43,10 @@ namespace gtsam {
|
|||
using boost::assign::cref_list_of;
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
/**
|
||||
* Nonlinear factor base class
|
||||
*
|
||||
* Templated on a values structure type. The values structures are typically
|
||||
* more general than just vectors, e.g., Rot3 or Pose3,
|
||||
* which are objects in non-linear manifolds (Lie groups).
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class NonlinearFactor: public Factor {
|
||||
|
@ -82,18 +80,10 @@ public:
|
|||
|
||||
/** print */
|
||||
virtual void print(const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const
|
||||
{
|
||||
std::cout << s << " keys = { ";
|
||||
BOOST_FOREACH(Key key, this->keys()) { std::cout << keyFormatter(key) << " "; }
|
||||
std::cout << "}" << std::endl;
|
||||
}
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
|
||||
|
||||
/** Check if two factors are equal */
|
||||
virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const {
|
||||
return Base::equals(f);
|
||||
}
|
||||
|
||||
virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const;
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
@ -128,17 +118,6 @@ public:
|
|||
virtual boost::shared_ptr<GaussianFactor>
|
||||
linearize(const Values& c) const = 0;
|
||||
|
||||
/**
|
||||
* Create a symbolic factor using the given ordering to determine the
|
||||
* variable indices.
|
||||
*/
|
||||
//virtual IndexFactor::shared_ptr symbolic(const Ordering& ordering) const {
|
||||
// std::vector<Index> indices(this->size());
|
||||
// for(size_t j=0; j<this->size(); ++j)
|
||||
// indices[j] = ordering[this->keys()[j]];
|
||||
// return IndexFactor::shared_ptr(new IndexFactor(indices));
|
||||
//}
|
||||
|
||||
/**
|
||||
* Creates a shared_ptr clone of the factor - needs to be specialized to allow
|
||||
* for subclasses
|
||||
|
@ -155,28 +134,13 @@ public:
|
|||
* Creates a shared_ptr clone of the factor with different keys using
|
||||
* a map from old->new keys
|
||||
*/
|
||||
shared_ptr rekey(const std::map<Key,Key>& rekey_mapping) const {
|
||||
shared_ptr new_factor = clone();
|
||||
for (size_t i=0; i<new_factor->size(); ++i) {
|
||||
Key& cur_key = new_factor->keys()[i];
|
||||
std::map<Key,Key>::const_iterator mapping = rekey_mapping.find(cur_key);
|
||||
if (mapping != rekey_mapping.end())
|
||||
cur_key = mapping->second;
|
||||
}
|
||||
return new_factor;
|
||||
}
|
||||
shared_ptr rekey(const std::map<Key,Key>& rekey_mapping) const;
|
||||
|
||||
/**
|
||||
* Clones a factor and fully replaces its keys
|
||||
* @param new_keys is the full replacement set of keys
|
||||
*/
|
||||
shared_ptr rekey(const std::vector<Key>& new_keys) const {
|
||||
assert(new_keys.size() == this->keys().size());
|
||||
shared_ptr new_factor = clone();
|
||||
new_factor->keys() = new_keys;
|
||||
return new_factor;
|
||||
}
|
||||
|
||||
shared_ptr rekey(const std::vector<Key>& new_keys) const;
|
||||
|
||||
}; // \class NonlinearFactor
|
||||
|
||||
|
@ -229,19 +193,10 @@ public:
|
|||
|
||||
/** Print */
|
||||
virtual void print(const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const
|
||||
{
|
||||
Base::print(s, keyFormatter);
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
}
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
|
||||
|
||||
/** Check if two factors are equal */
|
||||
virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const {
|
||||
const NoiseModelFactor* e = dynamic_cast<const NoiseModelFactor*>(&f);
|
||||
return e && Base::equals(f, tol) &&
|
||||
((!noiseModel_ && !e->noiseModel_) ||
|
||||
(noiseModel_ && e->noiseModel_ && noiseModel_->equals(*e->noiseModel_, tol)));
|
||||
}
|
||||
virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const;
|
||||
|
||||
/** get the dimension of the factor (number of rows on linearization) */
|
||||
virtual size_t dim() const {
|
||||
|
@ -265,12 +220,7 @@ public:
|
|||
* Vector of errors, whitened
|
||||
* This is the raw error, i.e., i.e. \f$ (h(x)-z)/\sigma \f$ in case of a Gaussian
|
||||
*/
|
||||
Vector whitenedError(const Values& c) const {
|
||||
const Vector unwhitenedErrorVec = unwhitenedError(c);
|
||||
if((size_t) unwhitenedErrorVec.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument("This factor was created with a NoiseModel of incorrect dimension.");
|
||||
return noiseModel_->whiten(unwhitenedErrorVec);
|
||||
}
|
||||
Vector whitenedError(const Values& c) const;
|
||||
|
||||
/**
|
||||
* Calculate the error of the factor.
|
||||
|
@ -278,65 +228,14 @@ public:
|
|||
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
||||
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
||||
*/
|
||||
virtual double error(const Values& c) const {
|
||||
if (this->active(c)) {
|
||||
const Vector unwhitenedErrorVec = unwhitenedError(c);
|
||||
if((size_t) unwhitenedErrorVec.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument("This factor was created with a NoiseModel of incorrect dimension.");
|
||||
return 0.5 * noiseModel_->distance(unwhitenedErrorVec);
|
||||
} else {
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
virtual double error(const Values& c) const;
|
||||
|
||||
/**
|
||||
* Linearize a non-linearFactorN to get a GaussianFactor,
|
||||
* \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$
|
||||
* Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values& x) const {
|
||||
// Only linearize if the factor is active
|
||||
if (!this->active(x))
|
||||
return boost::shared_ptr<JacobianFactor>();
|
||||
|
||||
// Create the set of terms - Jacobians for each index
|
||||
Vector b;
|
||||
// Call evaluate error to get Jacobians and b vector
|
||||
std::vector<Matrix> A(this->size());
|
||||
b = -unwhitenedError(x, A);
|
||||
if(noiseModel_)
|
||||
{
|
||||
if((size_t) b.size() != noiseModel_->dim())
|
||||
throw std::invalid_argument("This factor was created with a NoiseModel of incorrect dimension.");
|
||||
|
||||
this->noiseModel_->WhitenSystem(A,b);
|
||||
}
|
||||
|
||||
std::vector<std::pair<Key, Matrix> > terms(this->size());
|
||||
// Fill in terms
|
||||
for(size_t j=0; j<this->size(); ++j) {
|
||||
terms[j].first = this->keys()[j];
|
||||
terms[j].second.swap(A[j]);
|
||||
}
|
||||
|
||||
// TODO pass unwhitened + noise model to Gaussian factor
|
||||
// For now, only linearized constrained factors have noise model at linear level!!!
|
||||
if(noiseModel_)
|
||||
{
|
||||
noiseModel::Constrained::shared_ptr constrained =
|
||||
boost::dynamic_pointer_cast<noiseModel::Constrained>(this->noiseModel_);
|
||||
if(constrained) {
|
||||
size_t augmentedDim = terms[0].second.rows() - constrained->dim();
|
||||
Vector augmentedZero = zero(augmentedDim);
|
||||
Vector augmentedb = concatVectors(2, &b, &augmentedZero);
|
||||
return GaussianFactor::shared_ptr(new JacobianFactor(terms, augmentedb, constrained->unit(augmentedDim)));
|
||||
}
|
||||
else
|
||||
return GaussianFactor::shared_ptr(new JacobianFactor(terms, b));
|
||||
}
|
||||
else
|
||||
return GaussianFactor::shared_ptr(new JacobianFactor(terms, b));
|
||||
}
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values& x) const;
|
||||
|
||||
private:
|
||||
|
||||
|
@ -353,8 +252,15 @@ private:
|
|||
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** A convenient base class for creating your own NoiseModelFactor with 1
|
||||
* variable. To derive from this class, implement evaluateError(). */
|
||||
|
||||
/**
|
||||
* A convenient base class for creating your own NoiseModelFactor with 1
|
||||
* variable. To derive from this class, implement evaluateError().
|
||||
*
|
||||
* Templated on a values structure type. The values structures are typically
|
||||
* more general than just vectors, e.g., Rot3 or Pose3,
|
||||
* which are objects in non-linear manifolds (Lie groups).
|
||||
*/
|
||||
template<class VALUE>
|
||||
class NoiseModelFactor1: public NoiseModelFactor {
|
||||
|
||||
|
|
Loading…
Reference in New Issue