refactor python NonlinearOptimizerTest
parent
a0d64a9448
commit
bf8137b0c4
|
@ -15,12 +15,10 @@ from __future__ import print_function
|
||||||
import unittest
|
import unittest
|
||||||
|
|
||||||
import gtsam
|
import gtsam
|
||||||
from gtsam import (DoglegOptimizer, DoglegParams,
|
from gtsam import (DoglegOptimizer, DoglegParams, DummyPreconditionerParameters,
|
||||||
DummyPreconditionerParameters, GaussNewtonOptimizer,
|
GaussNewtonOptimizer, GaussNewtonParams, GncLMParams, GncLMOptimizer,
|
||||||
GaussNewtonParams, GncLMParams, GncLMOptimizer,
|
LevenbergMarquardtOptimizer, LevenbergMarquardtParams, NonlinearFactorGraph,
|
||||||
LevenbergMarquardtOptimizer, LevenbergMarquardtParams,
|
Ordering, PCGSolverParameters, Point2, PriorFactorPoint2, Values)
|
||||||
NonlinearFactorGraph, Ordering,
|
|
||||||
PCGSolverParameters, Point2, PriorFactorPoint2, Values)
|
|
||||||
from gtsam.utils.test_case import GtsamTestCase
|
from gtsam.utils.test_case import GtsamTestCase
|
||||||
|
|
||||||
KEY1 = 1
|
KEY1 = 1
|
||||||
|
@ -28,62 +26,62 @@ KEY2 = 2
|
||||||
|
|
||||||
|
|
||||||
class TestScenario(GtsamTestCase):
|
class TestScenario(GtsamTestCase):
|
||||||
def test_optimize(self):
|
"""Do trivial test with three optimizer variants."""
|
||||||
"""Do trivial test with three optimizer variants."""
|
|
||||||
fg = NonlinearFactorGraph()
|
def setUp(self):
|
||||||
|
"""Set up the optimization problem and ordering"""
|
||||||
|
# create graph
|
||||||
|
self.fg = NonlinearFactorGraph()
|
||||||
model = gtsam.noiseModel.Unit.Create(2)
|
model = gtsam.noiseModel.Unit.Create(2)
|
||||||
fg.add(PriorFactorPoint2(KEY1, Point2(0, 0), model))
|
self.fg.add(PriorFactorPoint2(KEY1, Point2(0, 0), model))
|
||||||
|
|
||||||
# test error at minimum
|
# test error at minimum
|
||||||
xstar = Point2(0, 0)
|
xstar = Point2(0, 0)
|
||||||
optimal_values = Values()
|
self.optimal_values = Values()
|
||||||
optimal_values.insert(KEY1, xstar)
|
self.optimal_values.insert(KEY1, xstar)
|
||||||
self.assertEqual(0.0, fg.error(optimal_values), 0.0)
|
self.assertEqual(0.0, self.fg.error(self.optimal_values), 0.0)
|
||||||
|
|
||||||
# test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
|
# test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 =
|
||||||
x0 = Point2(3, 3)
|
x0 = Point2(3, 3)
|
||||||
initial_values = Values()
|
self.initial_values = Values()
|
||||||
initial_values.insert(KEY1, x0)
|
self.initial_values.insert(KEY1, x0)
|
||||||
self.assertEqual(9.0, fg.error(initial_values), 1e-3)
|
self.assertEqual(9.0, self.fg.error(self.initial_values), 1e-3)
|
||||||
|
|
||||||
# optimize parameters
|
# optimize parameters
|
||||||
ordering = Ordering()
|
self.ordering = Ordering()
|
||||||
ordering.push_back(KEY1)
|
self.ordering.push_back(KEY1)
|
||||||
|
|
||||||
# Gauss-Newton
|
def test_gauss_newton(self):
|
||||||
gnParams = GaussNewtonParams()
|
gnParams = GaussNewtonParams()
|
||||||
gnParams.setOrdering(ordering)
|
gnParams.setOrdering(self.ordering)
|
||||||
actual1 = GaussNewtonOptimizer(fg, initial_values, gnParams).optimize()
|
actual = GaussNewtonOptimizer(self.fg, self.initial_values, gnParams).optimize()
|
||||||
self.assertAlmostEqual(0, fg.error(actual1))
|
self.assertAlmostEqual(0, self.fg.error(actual))
|
||||||
|
|
||||||
# Levenberg-Marquardt
|
def test_levenberg_marquardt(self):
|
||||||
lmParams = LevenbergMarquardtParams.CeresDefaults()
|
lmParams = LevenbergMarquardtParams.CeresDefaults()
|
||||||
lmParams.setOrdering(ordering)
|
lmParams.setOrdering(self.ordering)
|
||||||
actual2 = LevenbergMarquardtOptimizer(
|
actual = LevenbergMarquardtOptimizer(self.fg, self.initial_values, lmParams).optimize()
|
||||||
fg, initial_values, lmParams).optimize()
|
self.assertAlmostEqual(0, self.fg.error(actual))
|
||||||
self.assertAlmostEqual(0, fg.error(actual2))
|
|
||||||
|
|
||||||
# Levenberg-Marquardt
|
def test_levenberg_marquardt_pcg(self):
|
||||||
lmParams = LevenbergMarquardtParams.CeresDefaults()
|
lmParams = LevenbergMarquardtParams.CeresDefaults()
|
||||||
lmParams.setLinearSolverType("ITERATIVE")
|
lmParams.setLinearSolverType("ITERATIVE")
|
||||||
cgParams = PCGSolverParameters()
|
cgParams = PCGSolverParameters()
|
||||||
cgParams.setPreconditionerParams(DummyPreconditionerParameters())
|
cgParams.setPreconditionerParams(DummyPreconditionerParameters())
|
||||||
lmParams.setIterativeParams(cgParams)
|
lmParams.setIterativeParams(cgParams)
|
||||||
actual2 = LevenbergMarquardtOptimizer(
|
actual = LevenbergMarquardtOptimizer(self.fg, self.initial_values, lmParams).optimize()
|
||||||
fg, initial_values, lmParams).optimize()
|
self.assertAlmostEqual(0, self.fg.error(actual))
|
||||||
self.assertAlmostEqual(0, fg.error(actual2))
|
|
||||||
|
|
||||||
# Dogleg
|
def test_dogleg(self):
|
||||||
dlParams = DoglegParams()
|
dlParams = DoglegParams()
|
||||||
dlParams.setOrdering(ordering)
|
dlParams.setOrdering(self.ordering)
|
||||||
actual3 = DoglegOptimizer(fg, initial_values, dlParams).optimize()
|
actual = DoglegOptimizer(self.fg, self.initial_values, dlParams).optimize()
|
||||||
self.assertAlmostEqual(0, fg.error(actual3))
|
self.assertAlmostEqual(0, self.fg.error(actual))
|
||||||
|
|
||||||
# Graduated Non-Convexity (GNC)
|
def test_graduated_non_convexity(self):
|
||||||
gncParams = GncLMParams()
|
gncParams = GncLMParams()
|
||||||
actual4 = GncLMOptimizer(fg, initial_values, gncParams).optimize()
|
actual = GncLMOptimizer(self.fg, self.initial_values, gncParams).optimize()
|
||||||
self.assertAlmostEqual(0, fg.error(actual4))
|
self.assertAlmostEqual(0, self.fg.error(actual))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
Loading…
Reference in New Issue