Small improvements
parent
8fbabf5c24
commit
bf00ca891d
|
@ -392,6 +392,12 @@ namespace test_two_state_estimation {
|
|||
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
void addMeasurement(HybridBayesNet& hbn, Key z_key, Key x_key, double sigma) {
|
||||
auto measurement_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||
hbn.emplace_shared<GaussianConditional>(z_key, Vector1(0.0), I_1x1, x_key,
|
||||
-I_1x1, measurement_model);
|
||||
}
|
||||
|
||||
/// Create hybrid motion model p(x1 | x0, m1)
|
||||
static GaussianMixture::shared_ptr CreateHybridMotionModel(double mu0,
|
||||
double mu1,
|
||||
|
@ -414,15 +420,11 @@ HybridBayesNet CreateBayesNet(
|
|||
HybridBayesNet hbn;
|
||||
|
||||
// Add measurement model p(z0 | x0)
|
||||
const double measurement_sigma = 3.0;
|
||||
auto measurement_model = noiseModel::Isotropic::Sigma(1, measurement_sigma);
|
||||
hbn.emplace_shared<GaussianConditional>(Z(0), Vector1(0.0), I_1x1, X(0),
|
||||
-I_1x1, measurement_model);
|
||||
addMeasurement(hbn, Z(0), X(0), 3.0);
|
||||
|
||||
// Optionally add second measurement model p(z1 | x1)
|
||||
if (add_second_measurement) {
|
||||
hbn.emplace_shared<GaussianConditional>(Z(1), Vector1(0.0), I_1x1, X(1),
|
||||
-I_1x1, measurement_model);
|
||||
addMeasurement(hbn, Z(1), X(1), 3.0);
|
||||
}
|
||||
|
||||
// Add hybrid motion model
|
||||
|
@ -434,18 +436,27 @@ HybridBayesNet CreateBayesNet(
|
|||
return hbn;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Approximates the discrete marginal P(m1) using importance sampling.
|
||||
* @note Not typically called as expensive, but values are used in the tests.
|
||||
*
|
||||
* @param hbn The hybrid Bayesian network.
|
||||
* @param hybridMotionModel The hybrid motion model.
|
||||
* @param given Observed values for variables.
|
||||
* @param N Number of samples for importance sampling.
|
||||
* @return std::pair<double, double> Probabilities for m1 = 0 and m1 = 1.
|
||||
*/
|
||||
/// Approximate the discrete marginal P(m1) using importance sampling
|
||||
/// Not typically called as expensive, but values are used in the tests.
|
||||
void approximateDiscreteMarginal(
|
||||
std::pair<double, double> approximateDiscreteMarginal(
|
||||
const HybridBayesNet& hbn,
|
||||
const GaussianMixture::shared_ptr& hybridMotionModel,
|
||||
const VectorValues& given, size_t N = 100000) {
|
||||
/// Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1),
|
||||
/// using q(x0) = N(z0, sigma_Q) to sample x0.
|
||||
/// using q(x0) = N(z0, sigmaQ) to sample x0.
|
||||
HybridBayesNet q;
|
||||
q.push_back(hybridMotionModel); // Add hybrid motion model
|
||||
q.emplace_shared<GaussianConditional>(GaussianConditional::FromMeanAndStddev(
|
||||
X(0), given.at(Z(0)), /* sigma_Q = */ 3.0)); // Add proposal q(x0) for x0
|
||||
X(0), given.at(Z(0)), /* sigmaQ = */ 3.0)); // Add proposal q(x0) for x0
|
||||
q.emplace_shared<DiscreteConditional>(m1, "50/50"); // Discrete prior.
|
||||
|
||||
// Do importance sampling
|
||||
|
@ -460,6 +471,7 @@ void approximateDiscreteMarginal(
|
|||
double pm1 = w1 / (w0 + w1);
|
||||
std::cout << "p(m0) = " << 100 * (1.0 - pm1) << std::endl;
|
||||
std::cout << "p(m1) = " << 100 * pm1 << std::endl;
|
||||
return {1.0 - pm1, pm1};
|
||||
}
|
||||
|
||||
} // namespace test_two_state_estimation
|
||||
|
|
Loading…
Reference in New Issue