Merge branch 'imuFixed'

release/4.3a0
Luca 2014-12-02 19:40:47 -05:00
commit beb2c4f97a
7 changed files with 1377 additions and 1218 deletions

View File

@ -63,6 +63,10 @@ typedef Eigen::Matrix<double,3,9> Matrix39;
typedef Eigen::Block<Matrix> SubMatrix;
typedef Eigen::Block<const Matrix> ConstSubMatrix;
// Two very commonly used matrices:
const Matrix3 Z_3x3 = Matrix3::Zero();
const Matrix3 I_3x3 = Matrix3::Identity();
// Matlab-like syntax
/**

View File

@ -0,0 +1,497 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file CombinedImuFactor.cpp
* @author Luca Carlone
* @author Stephen Williams
* @author Richard Roberts
* @author Vadim Indelman
* @author David Jensen
* @author Frank Dellaert
**/
#include <gtsam/navigation/CombinedImuFactor.h>
/* External or standard includes */
#include <ostream>
namespace gtsam {
using namespace std;
//------------------------------------------------------------------------------
// Inner class CombinedPreintegratedMeasurements
//------------------------------------------------------------------------------
CombinedImuFactor::CombinedPreintegratedMeasurements::CombinedPreintegratedMeasurements(
const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
const Matrix3& biasAccCovariance, const Matrix3& biasOmegaCovariance,
const Matrix& biasAccOmegaInit, const bool use2ndOrderIntegration) :
biasHat_(bias), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
deltaRij_(Rot3()), deltaTij_(0.0),
delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
delRdelBiasOmega_(Z_3x3), use2ndOrderIntegration_(use2ndOrderIntegration)
{
measurementCovariance_.setZero();
measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
measurementCovariance_.block<3,3>(9,9) = biasAccCovariance;
measurementCovariance_.block<3,3>(12,12) = biasOmegaCovariance;
measurementCovariance_.block<6,6>(15,15) = biasAccOmegaInit;
PreintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
void CombinedImuFactor::CombinedPreintegratedMeasurements::print(const string& s) const{
cout << s << endl;
biasHat_.print(" biasHat");
cout << " deltaTij " << deltaTij_ << endl;
cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << endl;
cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << endl;
deltaRij_.print(" deltaRij ");
cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << endl;
cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << endl;
}
//------------------------------------------------------------------------------
bool CombinedImuFactor::CombinedPreintegratedMeasurements::equals(const CombinedPreintegratedMeasurements& expected, double tol) const{
return biasHat_.equals(expected.biasHat_, tol)
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
&& deltaRij_.equals(expected.deltaRij_, tol)
&& fabs(deltaTij_ - expected.deltaTij_) < tol
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
}
//------------------------------------------------------------------------------
void CombinedImuFactor::CombinedPreintegratedMeasurements::resetIntegration(){
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
deltaRij_ = Rot3();
deltaTij_ = 0.0;
delPdelBiasAcc_ = Z_3x3;
delPdelBiasOmega_ = Z_3x3;
delVdelBiasAcc_ = Z_3x3;
delVdelBiasOmega_ = Z_3x3;
delRdelBiasOmega_ = Z_3x3;
PreintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
const Vector3& measuredAcc, const Vector3& measuredOmega,
double deltaT, boost::optional<const Pose3&> body_P_sensor) {
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
// (i.e., we have to update jacobians and covariances before updating preintegrated measurements).
// First we compensate the measurements for the bias: since we have only an estimate of the bias, the covariance includes the corresponding uncertainty
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if(body_P_sensor){
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
}else{
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
}
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
// consider the uncertainty of the bias selection and we keep correlation between biases and preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3(theta_i);
Rot3 Rot_j = deltaRij_ * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(theta_j);
// Single Jacobians to propagate covariance
Matrix3 H_pos_pos = I_3x3;
Matrix3 H_pos_vel = I_3x3 * deltaT;
Matrix3 H_pos_angles = Z_3x3;
Matrix3 H_vel_pos = Z_3x3;
Matrix3 H_vel_vel = I_3x3;
Matrix3 H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
Matrix3 H_vel_biasacc = - deltaRij_.matrix() * deltaT;
Matrix3 H_angles_pos = Z_3x3;
Matrix3 H_angles_vel = Z_3x3;
Matrix3 H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
Matrix3 H_angles_biasomega =- Jrinv_theta_j * Jr_theta_incr * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(15,15);
F << H_pos_pos, H_pos_vel, H_pos_angles, Z_3x3, Z_3x3,
H_vel_pos, H_vel_vel, H_vel_angles, H_vel_biasacc, Z_3x3,
H_angles_pos, H_angles_vel, H_angles_angles, Z_3x3, H_angles_biasomega,
Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
// first order uncertainty propagation
// Optimized matrix multiplication (1/deltaT) * G * measurementCovariance * G.transpose()
Matrix G_measCov_Gt = Matrix::Zero(15,15);
// BLOCK DIAGONAL TERMS
G_measCov_Gt.block<3,3>(0,0) = deltaT * measurementCovariance_.block<3,3>(0,0);
G_measCov_Gt.block<3,3>(3,3) = (1/deltaT) * (H_vel_biasacc) *
(measurementCovariance_.block<3,3>(3,3) + measurementCovariance_.block<3,3>(15,15) ) *
(H_vel_biasacc.transpose());
G_measCov_Gt.block<3,3>(6,6) = (1/deltaT) * (H_angles_biasomega) *
(measurementCovariance_.block<3,3>(6,6) + measurementCovariance_.block<3,3>(18,18) ) *
(H_angles_biasomega.transpose());
G_measCov_Gt.block<3,3>(9,9) = deltaT * measurementCovariance_.block<3,3>(9,9);
G_measCov_Gt.block<3,3>(12,12) = deltaT * measurementCovariance_.block<3,3>(12,12);
// NEW OFF BLOCK DIAGONAL TERMS
Matrix3 block23 = H_vel_biasacc * measurementCovariance_.block<3,3>(18,15) * H_angles_biasomega.transpose();
G_measCov_Gt.block<3,3>(3,6) = block23;
G_measCov_Gt.block<3,3>(6,3) = block23.transpose();
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + G_measCov_Gt;
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
deltaPij_ += deltaVij_ * deltaT;
}else{
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
}
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
deltaRij_ = deltaRij_ * Rincr;
deltaTij_ += deltaT;
}
//------------------------------------------------------------------------------
// CombinedImuFactor methods
//------------------------------------------------------------------------------
CombinedImuFactor::CombinedImuFactor() :
preintegratedMeasurements_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Matrix::Zero(6,6)) {}
//------------------------------------------------------------------------------
CombinedImuFactor::CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor, const bool use2ndOrderCoriolis) :
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
preintegratedMeasurements_(preintegratedMeasurements),
gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
body_P_sensor_(body_P_sensor),
use2ndOrderCoriolis_(use2ndOrderCoriolis){
}
//------------------------------------------------------------------------------
gtsam::NonlinearFactor::shared_ptr CombinedImuFactor::clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
}
//------------------------------------------------------------------------------
void CombinedImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
cout << s << "CombinedImuFactor("
<< keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ","
<< keyFormatter(this->key3()) << ","
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << ","
<< keyFormatter(this->key6()) << ")\n";
preintegratedMeasurements_.print(" preintegrated measurements:");
cout << " gravity: [ " << gravity_.transpose() << " ]" << endl;
cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
this->noiseModel_->print(" noise model: ");
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
//------------------------------------------------------------------------------
bool CombinedImuFactor::equals(const NonlinearFactor& expected, double tol) const {
const This *e = dynamic_cast<const This*> (&expected);
return e != NULL && Base::equals(*e, tol)
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
//------------------------------------------------------------------------------
Vector CombinedImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias_i, const imuBias::ConstantBias& bias_j,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2,
boost::optional<Matrix&> H3, boost::optional<Matrix&> H4,
boost::optional<Matrix&> H5, boost::optional<Matrix&> H6) const {
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
// we give some shorter name to rotations and translations
const Rot3 Rot_i = pose_i.rotation();
const Rot3 Rot_j = pose_j.rotation();
const Vector3 pos_i = pose_i.translation().vector();
const Vector3 pos_j = pose_j.translation().vector();
// We compute factor's Jacobians, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
const Matrix3 Jr_theta_bcc = Rot3::rightJacobianExpMapSO3(theta_biascorrected_corioliscorrected);
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
const Matrix3 Jrinv_fRhat = Rot3::rightJacobianExpMapSO3inverse(Rot3::Logmap(fRhat));
if(H1) {
H1->resize(15,6);
Matrix3 dfPdPi;
Matrix3 dfVdPi;
if(use2ndOrderCoriolis_){
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
}
else{
dfPdPi = - Rot_i.matrix();
dfVdPi = Z_3x3;
}
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
// dfP/dPi
dfPdPi,
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
// dfV/dPi
dfVdPi,
// dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi
Z_3x3,
//dBiasAcc/dPi
Z_3x3, Z_3x3,
//dBiasOmega/dPi
Z_3x3, Z_3x3;
}
if(H2) {
H2->resize(15,3);
(*H2) <<
// dfP/dVi
- I_3x3 * deltaTij
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
- I_3x3
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
// dfR/dVi
Z_3x3,
//dBiasAcc/dVi
Z_3x3,
//dBiasOmega/dVi
Z_3x3;
}
if(H3) {
H3->resize(15,6);
(*H3) <<
// dfP/dPosej
Z_3x3, Rot_j.matrix(),
// dfV/dPosej
Matrix::Zero(3,6),
// dfR/dPosej
Jrinv_fRhat * ( I_3x3 ), Z_3x3,
//dBiasAcc/dPosej
Z_3x3, Z_3x3,
//dBiasOmega/dPosej
Z_3x3, Z_3x3;
}
if(H4) {
H4->resize(15,3);
(*H4) <<
// dfP/dVj
Z_3x3,
// dfV/dVj
I_3x3,
// dfR/dVj
Z_3x3,
//dBiasAcc/dVj
Z_3x3,
//dBiasOmega/dVj
Z_3x3;
}
if(H5) {
const Matrix3 Jrinv_theta_bc = Rot3::rightJacobianExpMapSO3inverse(theta_biascorrected);
const Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
H5->resize(15,6);
(*H5) <<
// dfP/dBias_i
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
// dfV/dBias_i
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
// dfR/dBias_i
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega),
//dBiasAcc/dBias_i
-I_3x3, Z_3x3,
//dBiasOmega/dBias_i
Z_3x3, -I_3x3;
}
if(H6) {
H6->resize(15,6);
(*H6) <<
// dfP/dBias_j
Z_3x3, Z_3x3,
// dfV/dBias_j
Z_3x3, Z_3x3,
// dfR/dBias_j
Z_3x3, Z_3x3,
//dBiasAcc/dBias_j
I_3x3, Z_3x3,
//dBiasOmega/dBias_j
Z_3x3, I_3x3;
}
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 fp =
pos_j - pos_i
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
- vel_i * deltaTij
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- 0.5 * gravity_ * deltaTij*deltaTij;
const Vector3 fv =
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- gravity_ * deltaTij;
const Vector3 fR = Rot3::Logmap(fRhat);
const Vector3 fbiasAcc = bias_j.accelerometer() - bias_i.accelerometer();
const Vector3 fbiasOmega = bias_j.gyroscope() - bias_i.gyroscope();
Vector r(15); r << fp, fv, fR, fbiasAcc, fbiasOmega; // vector of size 15
return r;
}
//------------------------------------------------------------------------------
PoseVelocityBias CombinedImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias_i,
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis){
const double& deltaTij = preintegratedMeasurements.deltaTij_;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
const Rot3 Rot_i = pose_i.rotation();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
if(use2ndOrderCoriolis){
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
return PoseVelocityBias(pose_j, vel_j, bias_i);
}
} /// namespace gtsam

View File

@ -11,714 +11,291 @@
/**
* @file CombinedImuFactor.h
* @author Luca Carlone, Stephen Williams, Richard Roberts, Vadim Indelman, David Jensen
* @author Luca Carlone
* @author Stephen Williams
* @author Richard Roberts
* @author Vadim Indelman
* @author David Jensen
* @author Frank Dellaert
**/
#pragma once
/* GTSAM includes */
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/base/debug.h>
/* External or standard includes */
#include <ostream>
namespace gtsam {
/**
* Struct to hold all state variables of CombinedImuFactor
* returned by predict function
*/
struct PoseVelocityBias {
Pose3 pose;
Vector3 velocity;
imuBias::ConstantBias bias;
/**
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
* independent sets in factor graphs: a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
* REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
*/
PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
const imuBias::ConstantBias _bias) :
/**
* Struct to hold all state variables of CombinedImuFactor returned by Predict function
*/
struct PoseVelocityBias {
Pose3 pose;
Vector3 velocity;
imuBias::ConstantBias bias;
PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
const imuBias::ConstantBias _bias) :
pose(_pose), velocity(_velocity), bias(_bias) {
}
};
}
};
/**
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
* independent sets in factor graphs: a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
* REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
/**
* CombinedImuFactor is a 6-ways factor involving previous state (pose and velocity of the vehicle, as well as bias
* at previous time step), and current state (pose, velocity, bias at current time step). According to the
* preintegration scheme proposed in [2], the CombinedImuFactor includes many IMU measurements, which are
* "summarized" using the CombinedPreintegratedMeasurements class. There are 3 main differences wrt ImuFactor:
* 1) The factor is 6-ways, meaning that it also involves both biases (previous and current time step).
* Therefore, the factor internally imposes the biases to be slowly varying; in particular, the matrices
* "biasAccCovariance" and "biasOmegaCovariance" described the random walk that models bias evolution.
* 2) The preintegration covariance takes into account the noise in the bias estimate used for integration.
* 3) The covariance matrix of the CombinedPreintegratedMeasurements preserves the correlation between the bias uncertainty
* and the preintegrated measurements uncertainty.
*/
class CombinedImuFactor: public NoiseModelFactor6<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias,imuBias::ConstantBias> {
public:
/** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
* and the corresponding covariance matrix. The measurements are then used to build the CombinedPreintegrated IMU factor (CombinedImuFactor).
* Integration is done incrementally (ideally, one integrates the measurement as soon as it is received
* from the IMU) so as to avoid costly integration at time of factor construction.
*/
class CombinedPreintegratedMeasurements {
class CombinedImuFactor: public NoiseModelFactor6<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias,imuBias::ConstantBias> {
friend class CombinedImuFactor;
protected:
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
Eigen::Matrix<double,21,21> measurementCovariance_; ///< (Raw measurements uncertainty) Covariance of the vector
///< [integrationError measuredAcc measuredOmega biasAccRandomWalk biasOmegaRandomWalk biasAccInit biasOmegaInit] in R^(21 x 21)
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
double deltaTij_; ///< Time interval from i to j
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Eigen::Matrix<double,15,15> PreintMeasCov_; ///< Covariance matrix of the preintegrated measurements
///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION BiasAcc BiasOmega]
///< (first-order propagation from *measurementCovariance*). CombinedPreintegratedMeasurements also include the biases and keep the correlation
///< between the preintegrated measurements and the biases
bool use2ndOrderIntegration_; ///< Controls the order of integration
public:
/** Struct to store results of preintegrating IMU measurements. Can be build
* incrementally so as to avoid costly integration at time of factor construction. */
/**
* Default constructor, initializes the class with no measurements
* @param bias Current estimate of acceleration and rotation rate biases
* @param measuredAccCovariance Covariance matrix of measuredAcc
* @param measuredOmegaCovariance Covariance matrix of measured Angular Rate
* @param integrationErrorCovariance Covariance matrix of integration errors (velocity -> position)
* @param biasAccCovariance Covariance matrix of biasAcc (random walk describing BIAS evolution)
* @param biasOmegaCovariance Covariance matrix of biasOmega (random walk describing BIAS evolution)
* @param biasAccOmegaInit Covariance of biasAcc & biasOmega when preintegrating measurements
* @param use2ndOrderIntegration Controls the order of integration
* (if false: p(t+1) = p(t) + v(t) deltaT ; if true: p(t+1) = p(t) + v(t) deltaT + 0.5 * acc(t) deltaT^2)
*/
CombinedPreintegratedMeasurements(const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
const Matrix3& biasAccCovariance, const Matrix3& biasOmegaCovariance,
const Matrix& biasAccOmegaInit, const bool use2ndOrderIntegration = false);
/** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated IMU factor*/
class CombinedPreintegratedMeasurements {
friend class CombinedImuFactor;
protected:
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
Matrix measurementCovariance_; ///< (Raw measurements uncertainty) Covariance of the vector
///< [integrationError measuredAcc measuredOmega biasAccRandomWalk biasOmegaRandomWalk biasAccInit biasOmegaInit] in R^(21 x 21)
/// print
void print(const std::string& s = "Preintegrated Measurements:") const;
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
double deltaTij_; ///< Time interval from i to j
/// equals
bool equals(const CombinedPreintegratedMeasurements& expected, double tol=1e-9) const;
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov_; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
bool use2ndOrderIntegration_; ///< Controls the order of integration
// public:
///< In the combined factor is also includes the biases and keeps the correlation between the preintegrated measurements and the biases
///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION BiasAcc BiasOmega]
/** Default constructor, initialize with no IMU measurements */
public:
CombinedPreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& biasAccCovariance, ///< Covariance matrix of biasAcc (random walk describing BIAS evolution)
const Matrix3& biasOmegaCovariance, ///< Covariance matrix of biasOmega (random walk describing BIAS evolution)
const Matrix& biasAccOmegaInit, ///< Covariance of biasAcc & biasOmega when preintegrating measurements
const bool use2ndOrderIntegration = false ///< Controls the order of integration
///< (this allows to consider the uncertainty of the BIAS choice when integrating the measurements)
) : biasHat_(bias), measurementCovariance_(21,21), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()), deltaTij_(0.0),
delPdelBiasAcc_(Matrix3::Zero()), delPdelBiasOmega_(Matrix3::Zero()),
delVdelBiasAcc_(Matrix3::Zero()), delVdelBiasOmega_(Matrix3::Zero()),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(Matrix::Zero(15,15)),
use2ndOrderIntegration_(use2ndOrderIntegration)
{
// COVARIANCE OF: [Integration AccMeasurement OmegaMeasurement BiasAccRandomWalk BiasOmegaRandomWalk (BiasAccInit BiasOmegaInit)] SIZE (21x21)
measurementCovariance_ << integrationErrorCovariance , Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), measuredAccCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), measuredOmegaCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasAccCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasOmegaCovariance, Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasAccOmegaInit.block(0,0,3,3), biasAccOmegaInit.block(0,3,3,3),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasAccOmegaInit.block(3,0,3,3), biasAccOmegaInit.block(3,3,3,3);
/// Re-initialize CombinedPreintegratedMeasurements
void resetIntegration();
}
/**
* Add a single IMU measurement to the preintegration.
* @param measuredAcc Measured acceleration (in body frame, as given by the sensor)
* @param measuredOmega Measured angular velocity (as given by the sensor)
* @param deltaT Time interval between two consecutive IMU measurements
* @param body_P_sensor Optional sensor frame (pose of the IMU in the body frame)
*/
void integrateMeasurement(const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
boost::optional<const Pose3&> body_P_sensor = boost::none);
CombinedPreintegratedMeasurements() :
biasHat_(imuBias::ConstantBias()), measurementCovariance_(21,21), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()), deltaTij_(0.0),
delPdelBiasAcc_(Matrix3::Zero()), delPdelBiasOmega_(Matrix3::Zero()),
delVdelBiasAcc_(Matrix3::Zero()), delVdelBiasOmega_(Matrix3::Zero()),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(Matrix::Zero(15,15)),
use2ndOrderIntegration_(false) ///< Controls the order of integration
{
}
/// methods to access class variables
Matrix measurementCovariance() const {return measurementCovariance_;}
Matrix deltaRij() const {return deltaRij_.matrix();}
double deltaTij() const{return deltaTij_;}
Vector deltaPij() const {return deltaPij_;}
Vector deltaVij() const {return deltaVij_;}
Vector biasHat() const { return biasHat_.vector();}
Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
Matrix PreintMeasCov() const { return PreintMeasCov_;}
/** print */
void print(const std::string& s = "Preintegrated Measurements:") const {
std::cout << s << std::endl;
biasHat_.print(" biasHat");
std::cout << " deltaTij " << deltaTij_ << std::endl;
std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
deltaRij_.print(" deltaRij ");
std::cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << std::endl;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
// Note: all delta terms refer to an IMU\sensor system at t0
Vector body_t_a_body = msr_acc_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
}
/** equals */
bool equals(const CombinedPreintegratedMeasurements& expected, double tol=1e-9) const {
return biasHat_.equals(expected.biasHat_, tol)
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
&& deltaRij_.equals(expected.deltaRij_, tol)
&& std::fabs(deltaTij_ - expected.deltaTij_) < tol
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
}
void resetIntegration(){
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
deltaRij_ = Rot3();
deltaTij_ = 0.0;
delPdelBiasAcc_ = Matrix3::Zero();
delPdelBiasOmega_ = Matrix3::Zero();
delVdelBiasAcc_ = Matrix3::Zero();
delVdelBiasOmega_ = Matrix3::Zero();
delRdelBiasOmega_ = Matrix3::Zero();
PreintMeasCov_ = Matrix::Zero(15,15);
}
/** Add a single IMU measurement to the preintegration. */
void integrateMeasurement(
const Vector3& measuredAcc, ///< Measured linear acceleration (in body frame)
const Vector3& measuredOmega, ///< Measured angular velocity (in body frame)
double deltaT, ///< Time step
boost::optional<const Pose3&> body_P_sensor = boost::none ///< Sensor frame
) {
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
// First we compensate the measurements for the bias: since we have only an estimate of the bias, the covariance includes the corresponding uncertainty
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if(body_P_sensor){
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
}else{
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
}
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
// consider the uncertainty of the bias selection and we keep correlation between biases and preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
Matrix3 Z_3x3 = Matrix3::Zero();
Matrix3 I_3x3 = Matrix3::Identity();
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3(theta_i);
Rot3 Rot_j = deltaRij_ * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(theta_j);
// Single Jacobians to propagate covariance
Matrix3 H_pos_pos = I_3x3;
Matrix3 H_pos_vel = I_3x3 * deltaT;
Matrix3 H_pos_angles = Z_3x3;
Matrix3 H_vel_pos = Z_3x3;
Matrix3 H_vel_vel = I_3x3;
Matrix3 H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
Matrix3 H_vel_biasacc = - deltaRij_.matrix() * deltaT;
Matrix3 H_angles_pos = Z_3x3;
Matrix3 H_angles_vel = Z_3x3;
Matrix3 H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
Matrix3 H_angles_biasomega =- Jrinv_theta_j * Jr_theta_incr * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(15,15);
F << H_pos_pos, H_pos_vel, H_pos_angles, Z_3x3, Z_3x3,
H_vel_pos, H_vel_vel, H_vel_angles, H_vel_biasacc, Z_3x3,
H_angles_pos, H_angles_vel, H_angles_angles, Z_3x3, H_angles_biasomega,
Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
// first order uncertainty propagation
// Optimized matrix multiplication (1/deltaT) * G * measurementCovariance * G.transpose()
Matrix G_measCov_Gt = Matrix::Zero(15,15);
// BLOCK DIAGONAL TERMS
G_measCov_Gt.block(0,0,3,3) = deltaT * measurementCovariance_.block(0,0,3,3);
G_measCov_Gt.block(3,3,3,3) = (1/deltaT) * (H_vel_biasacc) *
(measurementCovariance_.block(3,3,3,3) + measurementCovariance_.block(15,15,3,3) ) *
(H_vel_biasacc.transpose());
G_measCov_Gt.block(6,6,3,3) = (1/deltaT) * (H_angles_biasomega) *
(measurementCovariance_.block(6,6,3,3) + measurementCovariance_.block(18,18,3,3) ) *
(H_angles_biasomega.transpose());
G_measCov_Gt.block(9,9,3,3) = deltaT * measurementCovariance_.block(9,9,3,3);
G_measCov_Gt.block(12,12,3,3) = deltaT * measurementCovariance_.block(12,12,3,3);
// NEW OFF BLOCK DIAGONAL TERMS
Matrix3 block23 = H_vel_biasacc * measurementCovariance_.block(18,15,3,3) * H_angles_biasomega.transpose();
G_measCov_Gt.block(3,6,3,3) = block23;
G_measCov_Gt.block(6,3,3,3) = block23.transpose();
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + G_measCov_Gt;
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
deltaPij_ += deltaVij_ * deltaT;
}else{
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
}
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
deltaRij_ = deltaRij_ * Rincr;
deltaTij_ += deltaT;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
// Note: all delta terms refer to an IMU\sensor system at t0
Vector body_t_a_body = msr_acc_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
}
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
const Vector3& delta_angles){
// Note: all delta terms refer to an IMU\sensor system at t0
// Calculate the corrected measurements using the Bias object
Vector body_t_omega_body= msr_gyro_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
Matrix measurementCovariance() const {return measurementCovariance_;}
Matrix deltaRij() const {return deltaRij_.matrix();}
double deltaTij() const{return deltaTij_;}
Vector deltaPij() const {return deltaPij_;}
Vector deltaVij() const {return deltaVij_;}
Vector biasHat() const { return biasHat_.vector();}
Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
Matrix PreintMeasCov() const { return PreintMeasCov_;}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(biasHat_);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
ar & BOOST_SERIALIZATION_NVP(deltaPij_);
ar & BOOST_SERIALIZATION_NVP(deltaVij_);
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
}
};
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
const Vector3& delta_angles){
// Note: all delta terms refer to an IMU\sensor system at t0
// Calculate the corrected measurements using the Bias object
Vector body_t_omega_body= msr_gyro_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
private:
typedef CombinedImuFactor This;
typedef NoiseModelFactor6<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias,imuBias::ConstantBias> Base;
CombinedPreintegratedMeasurements preintegratedMeasurements_;
Vector3 gravity_;
Vector3 omegaCoriolis_;
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
public:
/** Shorthand for a smart pointer to a factor */
#if !defined(_MSC_VER) && __GNUC__ == 4 && __GNUC_MINOR__ > 5
typedef typename boost::shared_ptr<CombinedImuFactor> shared_ptr;
#else
typedef boost::shared_ptr<CombinedImuFactor> shared_ptr;
#endif
/** Default constructor - only use for serialization */
CombinedImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix::Zero(6,6)) {}
/** Constructor */
CombinedImuFactor(
Key pose_i, ///< previous pose key
Key vel_i, ///< previous velocity key
Key pose_j, ///< current pose key
Key vel_j, ///< current velocity key
Key bias_i, ///< previous bias key
Key bias_j, ///< current bias key
const CombinedPreintegratedMeasurements& preintegratedMeasurements, ///< Preintegrated IMU measurements
const Vector3& gravity, ///< gravity vector
const Vector3& omegaCoriolis, ///< rotation rate of inertial frame
boost::optional<const Pose3&> body_P_sensor = boost::none, ///< The Pose of the sensor frame in the body frame
const bool use2ndOrderCoriolis = false ///< When true, the second-order term is used in the calculation of the Coriolis Effect
) :
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
preintegratedMeasurements_(preintegratedMeasurements),
gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
body_P_sensor_(body_P_sensor),
use2ndOrderCoriolis_(use2ndOrderCoriolis){
}
virtual ~CombinedImuFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "CombinedImuFactor("
<< keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ","
<< keyFormatter(this->key3()) << ","
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << ","
<< keyFormatter(this->key6()) << ")\n";
preintegratedMeasurements_.print(" preintegrated measurements:");
std::cout << " gravity: [ " << gravity_.transpose() << " ]" << std::endl;
std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << std::endl;
this->noiseModel_->print(" noise model: ");
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
/** equals */
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
const This *e = dynamic_cast<const This*> (&expected);
return e != NULL && Base::equals(*e, tol)
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/** Access the preintegrated measurements. */
const CombinedPreintegratedMeasurements& preintegratedMeasurements() const {
return preintegratedMeasurements_; }
const Vector3& gravity() const { return gravity_; }
const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
/** implement functions needed to derive from Factor */
/** vector of errors */
Vector evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias_i, const imuBias::ConstantBias& bias_j,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none,
boost::optional<Matrix&> H5 = boost::none,
boost::optional<Matrix&> H6 = boost::none) const
{
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
// we give some shorter name to rotations and translations
const Rot3 Rot_i = pose_i.rotation();
const Rot3 Rot_j = pose_j.rotation();
const Vector3 pos_i = pose_i.translation().vector();
const Vector3 pos_j = pose_j.translation().vector();
// We compute factor's Jacobians, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
const Matrix3 Jr_theta_bcc = Rot3::rightJacobianExpMapSO3(theta_biascorrected_corioliscorrected);
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
const Matrix3 Jrinv_fRhat = Rot3::rightJacobianExpMapSO3inverse(Rot3::Logmap(fRhat));
/*
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
// dfP/dPi
- Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij,
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
// dfV/dPi
skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij,
// dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi
Matrix3::Zero(),
//dBiasAcc/dPi
Matrix3::Zero(), Matrix3::Zero(),
//dBiasOmega/dPi
Matrix3::Zero(), Matrix3::Zero();
*/
if(H1) {
H1->resize(15,6);
Matrix3 dfPdPi;
Matrix3 dfVdPi;
if(use2ndOrderCoriolis_){
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
}
else{
dfPdPi = - Rot_i.matrix();
dfVdPi = Matrix3::Zero();
}
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
// dfP/dPi
dfPdPi,
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
// dfV/dPi
dfVdPi,
// dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi
Matrix3::Zero(),
//dBiasAcc/dPi
Matrix3::Zero(), Matrix3::Zero(),
//dBiasOmega/dPi
Matrix3::Zero(), Matrix3::Zero();
}
if(H2) {
H2->resize(15,3);
(*H2) <<
// dfP/dVi
- Matrix3::Identity() * deltaTij
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
- Matrix3::Identity()
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
// dfR/dVi
Matrix3::Zero(),
//dBiasAcc/dVi
Matrix3::Zero(),
//dBiasOmega/dVi
Matrix3::Zero();
}
if(H3) {
H3->resize(15,6);
(*H3) <<
// dfP/dPosej
Matrix3::Zero(), Rot_j.matrix(),
// dfV/dPosej
Matrix::Zero(3,6),
// dfR/dPosej
Jrinv_fRhat * ( Matrix3::Identity() ), Matrix3::Zero(),
//dBiasAcc/dPosej
Matrix3::Zero(), Matrix3::Zero(),
//dBiasOmega/dPosej
Matrix3::Zero(), Matrix3::Zero();
}
if(H4) {
H4->resize(15,3);
(*H4) <<
// dfP/dVj
Matrix3::Zero(),
// dfV/dVj
Matrix3::Identity(),
// dfR/dVj
Matrix3::Zero(),
//dBiasAcc/dVj
Matrix3::Zero(),
//dBiasOmega/dVj
Matrix3::Zero();
}
if(H5) {
const Matrix3 Jrinv_theta_bc = Rot3::rightJacobianExpMapSO3inverse(theta_biascorrected);
const Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
H5->resize(15,6);
(*H5) <<
// dfP/dBias_i
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
// dfV/dBias_i
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
// dfR/dBias_i
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega),
//dBiasAcc/dBias_i
-Matrix3::Identity(), Matrix3::Zero(),
//dBiasOmega/dBias_i
Matrix3::Zero(), -Matrix3::Identity();
}
if(H6) {
H6->resize(15,6);
(*H6) <<
// dfP/dBias_j
Matrix3::Zero(), Matrix3::Zero(),
// dfV/dBias_j
Matrix3::Zero(), Matrix3::Zero(),
// dfR/dBias_j
Matrix3::Zero(), Matrix3::Zero(),
//dBiasAcc/dBias_j
Matrix3::Identity(), Matrix3::Zero(),
//dBiasOmega/dBias_j
Matrix3::Zero(), Matrix3::Identity();
}
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 fp =
pos_j - pos_i
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
- vel_i * deltaTij
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- 0.5 * gravity_ * deltaTij*deltaTij;
const Vector3 fv =
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- gravity_ * deltaTij;
const Vector3 fR = Rot3::Logmap(fRhat);
const Vector3 fbiasAcc = bias_j.accelerometer() - bias_i.accelerometer();
const Vector3 fbiasOmega = bias_j.gyroscope() - bias_i.gyroscope();
Vector r(15); r << fp, fv, fR, fbiasAcc, fbiasOmega; // vector of size 15
return r;
}
/** predicted states from IMU */
static PoseVelocityBias Predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias_i,
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, boost::optional<const Pose3&> body_P_sensor = boost::none,
const bool use2ndOrderCoriolis = false)
{
const double& deltaTij = preintegratedMeasurements.deltaTij_;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
const Rot3 Rot_i = pose_i.rotation();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
if(use2ndOrderCoriolis){
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
return PoseVelocityBias(pose_j, vel_j, bias_i);
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor6",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
ar & BOOST_SERIALIZATION_NVP(gravity_);
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar & BOOST_SERIALIZATION_NVP(biasHat_);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
ar & BOOST_SERIALIZATION_NVP(deltaPij_);
ar & BOOST_SERIALIZATION_NVP(deltaVij_);
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
}
}; // \class CombinedImuFactor
};
typedef CombinedImuFactor::CombinedPreintegratedMeasurements CombinedImuFactorPreintegratedMeasurements;
private:
typedef CombinedImuFactor This;
typedef NoiseModelFactor6<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias,imuBias::ConstantBias> Base;
CombinedPreintegratedMeasurements preintegratedMeasurements_;
Vector3 gravity_;
Vector3 omegaCoriolis_;
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
public:
/** Shorthand for a smart pointer to a factor */
#if !defined(_MSC_VER) && __GNUC__ == 4 && __GNUC_MINOR__ > 5
typedef typename boost::shared_ptr<CombinedImuFactor> shared_ptr;
#else
typedef boost::shared_ptr<CombinedImuFactor> shared_ptr;
#endif
/** Default constructor - only use for serialization */
CombinedImuFactor();
/**
* Constructor
* @param pose_i Previous pose key
* @param vel_i Previous velocity key
* @param pose_j Current pose key
* @param vel_j Current velocity key
* @param bias_i Previous bias key
* @param bias_j Current bias key
* @param CombinedPreintegratedMeasurements CombinedPreintegratedMeasurements IMU measurements
* @param gravity Gravity vector expressed in the global frame
* @param omegaCoriolis Rotation rate of the global frame w.r.t. an inertial frame
* @param body_P_sensor Optional pose of the sensor frame in the body frame
* @param use2ndOrderCoriolis When true, the second-order term is used in the calculation of the Coriolis Effect
*/
CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false);
virtual ~CombinedImuFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const;
/** implement functions needed for Testable */
/// print
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/// equals
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const;
/** Access the preintegrated measurements. */
const CombinedPreintegratedMeasurements& preintegratedMeasurements() const {
return preintegratedMeasurements_; }
const Vector3& gravity() const { return gravity_; }
const Vector3& omegaCoriolis() const { return omegaCoriolis_; }
/** implement functions needed to derive from Factor */
/// vector of errors
Vector evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias_i, const imuBias::ConstantBias& bias_j,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none,
boost::optional<Matrix&> H5 = boost::none,
boost::optional<Matrix&> H6 = boost::none) const;
/// predicted states from IMU
static PoseVelocityBias Predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias_i,
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false);
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("NoiseModelFactor6",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
ar & BOOST_SERIALIZATION_NVP(gravity_);
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
}; // class CombinedImuFactor
typedef CombinedImuFactor::CombinedPreintegratedMeasurements CombinedImuFactorPreintegratedMeasurements;
} /// namespace gtsam

View File

@ -0,0 +1,438 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ImuFactor.cpp
* @author Luca Carlone
* @author Stephen Williams
* @author Richard Roberts
* @author Vadim Indelman
* @author David Jensen
* @author Frank Dellaert
**/
#include <gtsam/navigation/ImuFactor.h>
/* External or standard includes */
#include <ostream>
namespace gtsam {
using namespace std;
//------------------------------------------------------------------------------
// Inner class PreintegratedMeasurements
//------------------------------------------------------------------------------
ImuFactor::PreintegratedMeasurements::PreintegratedMeasurements(
const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
const bool use2ndOrderIntegration) :
biasHat_(bias), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
deltaRij_(Rot3()), deltaTij_(0.0),
delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
delRdelBiasOmega_(Z_3x3), use2ndOrderIntegration_(use2ndOrderIntegration)
{
measurementCovariance_.setZero();
measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
PreintMeasCov_.setZero(9,9);
}
//------------------------------------------------------------------------------
void ImuFactor::PreintegratedMeasurements::print(const string& s) const {
cout << s << endl;
biasHat_.print(" biasHat");
cout << " deltaTij " << deltaTij_ << endl;
cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << endl;
cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << endl;
deltaRij_.print(" deltaRij ");
cout << " measurementCovariance = \n [ " << measurementCovariance_ << " ]" << endl;
cout << " PreintMeasCov = \n [ " << PreintMeasCov_ << " ]" << endl;
}
//------------------------------------------------------------------------------
bool ImuFactor::PreintegratedMeasurements::equals(const PreintegratedMeasurements& expected, double tol) const {
return biasHat_.equals(expected.biasHat_, tol)
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
&& deltaRij_.equals(expected.deltaRij_, tol)
&& fabs(deltaTij_ - expected.deltaTij_) < tol
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
}
//------------------------------------------------------------------------------
void ImuFactor::PreintegratedMeasurements::resetIntegration(){
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
deltaRij_ = Rot3();
deltaTij_ = 0.0;
delPdelBiasAcc_ = Z_3x3;
delPdelBiasOmega_ = Z_3x3;
delVdelBiasAcc_ = Z_3x3;
delVdelBiasOmega_ = Z_3x3;
delRdelBiasOmega_ = Z_3x3;
PreintMeasCov_.setZero();
}
//------------------------------------------------------------------------------
void ImuFactor::PreintegratedMeasurements::integrateMeasurement(
const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
boost::optional<const Pose3&> body_P_sensor) {
// NOTE: order is important here because each update uses old values (i.e., we have to update
// jacobians and covariances before updating preintegrated measurements).
// First we compensate the measurements for the bias
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if(body_P_sensor){
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
}else{
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
}
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
// Update preintegrated measurements covariance
// as in [2] we consider a first order propagation that can be seen as a prediction phase in an EKF framework
/* ----------------------------------------------------------------------------------------------------------------------- */
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3(theta_i);
Rot3 Rot_j = deltaRij_ * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(theta_j);
Matrix H_pos_pos = I_3x3;
Matrix H_pos_vel = I_3x3 * deltaT;
Matrix H_pos_angles = Z_3x3;
Matrix H_vel_pos = Z_3x3;
Matrix H_vel_vel = I_3x3;
Matrix H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
Matrix H_angles_pos = Z_3x3;
Matrix H_angles_vel = Z_3x3;
Matrix H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
// analytic expression corresponding to the following numerical derivative
// Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(9,9);
F << H_pos_pos, H_pos_vel, H_pos_angles,
H_vel_pos, H_vel_vel, H_vel_angles,
H_angles_pos, H_angles_vel, H_angles_angles;
// first order uncertainty propagation:
// the deltaT allows to pass from continuous time noise to discrete time noise
// measurementCovariance_discrete = measurementCovariance_contTime * (1/deltaT)
// Gt * Qt * G =(approx)= measurementCovariance_discrete * deltaT^2 = measurementCovariance_contTime * deltaT
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + measurementCovariance_ * deltaT ;
// Extended version, without approximation: Gt * Qt * G =(approx)= measurementCovariance_contTime * deltaT
// This in only kept for documentation.
//
// Matrix G(9,9);
// G << I_3x3 * deltaT, Z_3x3, Z_3x3,
// Z_3x3, deltaRij.matrix() * deltaT, Z_3x3,
// Z_3x3, Z_3x3, Jrinv_theta_j * Jr_theta_incr * deltaT;
//
// PreintMeasCov = F * PreintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G.transpose();
// Update preintegrated measurements (this has to be done after the update of covariances and jacobians!)
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
deltaPij_ += deltaVij_ * deltaT;
}else{
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
}
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
deltaRij_ = deltaRij_ * Rincr;
deltaTij_ += deltaT;
}
//------------------------------------------------------------------------------
// ImuFactor methods
//------------------------------------------------------------------------------
ImuFactor::ImuFactor() :
preintegratedMeasurements_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3), use2ndOrderCoriolis_(false){}
//------------------------------------------------------------------------------
ImuFactor::ImuFactor(
Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
const PreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor,
const bool use2ndOrderCoriolis) :
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias),
preintegratedMeasurements_(preintegratedMeasurements),
gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
body_P_sensor_(body_P_sensor),
use2ndOrderCoriolis_(use2ndOrderCoriolis){
}
//------------------------------------------------------------------------------
gtsam::NonlinearFactor::shared_ptr ImuFactor::clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
}
//------------------------------------------------------------------------------
void ImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
cout << s << "ImuFactor("
<< keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ","
<< keyFormatter(this->key3()) << ","
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << ")\n";
preintegratedMeasurements_.print(" preintegrated measurements:");
cout << " gravity: [ " << gravity_.transpose() << " ]" << endl;
cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
this->noiseModel_->print(" noise model: ");
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
//------------------------------------------------------------------------------
bool ImuFactor::equals(const NonlinearFactor& expected, double tol) const {
const This *e = dynamic_cast<const This*> (&expected);
return e != NULL && Base::equals(*e, tol)
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
//------------------------------------------------------------------------------
Vector ImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2,
boost::optional<Matrix&> H3, boost::optional<Matrix&> H4,
boost::optional<Matrix&> H5) const
{
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
// we give some shorter name to rotations and translations
const Rot3 Rot_i = pose_i.rotation();
const Rot3 Rot_j = pose_j.rotation();
const Vector3 pos_i = pose_i.translation().vector();
const Vector3 pos_j = pose_j.translation().vector();
// We compute factor's Jacobians
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
const Matrix3 Jr_theta_bcc = Rot3::rightJacobianExpMapSO3(theta_biascorrected_corioliscorrected);
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
const Matrix3 Jrinv_fRhat = Rot3::rightJacobianExpMapSO3inverse(Rot3::Logmap(fRhat));
if(H1) {
H1->resize(9,6);
Matrix3 dfPdPi;
Matrix3 dfVdPi;
if(use2ndOrderCoriolis_){
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
}
else{
dfPdPi = - Rot_i.matrix();
dfVdPi = Z_3x3;
}
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
// dfP/dPi
dfPdPi,
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
// dfV/dPi
dfVdPi,
// dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi
Z_3x3;
}
if(H2) {
H2->resize(9,3);
(*H2) <<
// dfP/dVi
- I_3x3 * deltaTij
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
- I_3x3
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
// dfR/dVi
Z_3x3;
}
if(H3) {
H3->resize(9,6);
(*H3) <<
// dfP/dPosej
Z_3x3, Rot_j.matrix(),
// dfV/dPosej
Matrix::Zero(3,6),
// dfR/dPosej
Jrinv_fRhat * ( I_3x3 ), Z_3x3;
}
if(H4) {
H4->resize(9,3);
(*H4) <<
// dfP/dVj
Z_3x3,
// dfV/dVj
I_3x3,
// dfR/dVj
Z_3x3;
}
if(H5) {
const Matrix3 Jrinv_theta_bc = Rot3::rightJacobianExpMapSO3inverse(theta_biascorrected);
const Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
H5->resize(9,6);
(*H5) <<
// dfP/dBias
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
// dfV/dBias
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
// dfR/dBias
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega);
}
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 fp =
pos_j - pos_i
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
- vel_i * deltaTij
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- 0.5 * gravity_ * deltaTij*deltaTij;
const Vector3 fv =
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- gravity_ * deltaTij;
const Vector3 fR = Rot3::Logmap(fRhat);
Vector r(9); r << fp, fv, fR;
return r;
}
//------------------------------------------------------------------------------
PoseVelocity ImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias, const PreintegratedMeasurements preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis)
{
const double& deltaTij = preintegratedMeasurements.deltaTij_;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
const Rot3 Rot_i = pose_i.rotation();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
if(use2ndOrderCoriolis){
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
return PoseVelocity(pose_j, vel_j);
}
} /// namespace gtsam

View File

@ -11,23 +11,39 @@
/**
* @file ImuFactor.h
* @author Luca Carlone, Stephen Williams, Richard Roberts, Vadim Indelman, David Jensen
* @author Luca Carlone
* @author Stephen Williams
* @author Richard Roberts
* @author Vadim Indelman
* @author David Jensen
* @author Frank Dellaert
**/
#pragma once
/* GTSAM includes */
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/debug.h>
/* External or standard includes */
#include <ostream>
namespace gtsam {
/**
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
* independent sets in factor graphs: a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
** REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
*/
/**
* Struct to hold return variables by the Predict Function
*/
@ -35,265 +51,121 @@ struct PoseVelocity {
Pose3 pose;
Vector3 velocity;
PoseVelocity(const Pose3& _pose, const Vector3& _velocity) :
pose(_pose), velocity(_velocity) {
pose(_pose), velocity(_velocity) {
}
};
/**
* ImuFactor is a 5-ways factor involving previous state (pose and velocity of the vehicle at previous time step),
* current state (pose and velocity at current time step), and the bias estimate. According to the
* preintegration scheme proposed in [2], the ImuFactor includes many IMU measurements, which are
* "summarized" using the PreintegratedMeasurements class.
* Note that this factor does not force "temporal consistency" of the biases (which are usually
* slowly varying quantities), see also CombinedImuFactor for more details.
*/
class ImuFactor: public NoiseModelFactor5<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias> {
public:
/**
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert, Eliminating conditionally
* independent sets in factor graphs: a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*
** REFERENCES:
* [1] G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie Groups", Volume 2, 2008.
* [2] T. Lupton and S.Sukkarieh, "Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built
* Environments Without Initial Conditions", TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor: Computation of the Jacobian Matrices", Tech. Report, 2013.
* PreintegratedMeasurements accumulates (integrates) the IMU measurements
* (rotation rates and accelerations) and the corresponding covariance matrix.
* The measurements are then used to build the Preintegrated IMU factor (ImuFactor).
* Integration is done incrementally (ideally, one integrates the measurement as soon as it is received
* from the IMU) so as to avoid costly integration at time of factor construction.
*/
class PreintegratedMeasurements {
class ImuFactor: public NoiseModelFactor5<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias> {
public:
friend class ImuFactor;
/** Struct to store results of preintegrating IMU measurements. Can be build
* incrementally so as to avoid costly integration at time of factor construction. */
protected:
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
Eigen::Matrix<double,9,9> measurementCovariance_; ///< (continuous-time uncertainty) "Covariance" of the vector [integrationError measuredAcc measuredOmega] in R^(9X9)
/** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated IMU factor*/
class PreintegratedMeasurements {
friend class ImuFactor;
protected:
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
Matrix measurementCovariance_; ///< (continuous-time uncertainty) Covariance of the vector [integrationError measuredAcc measuredOmega] in R^(9X9)
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
double deltaTij_; ///< Time interval from i to j
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
double deltaTij_; ///< Time interval from i to j
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Eigen::Matrix<double,9,9> PreintMeasCov_; ///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION]
///< (first-order propagation from *measurementCovariance*).
bool use2ndOrderIntegration_; ///< Controls the order of integration
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov_; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
bool use2ndOrderIntegration_; ///< Controls the order of integration
public:
/** Default constructor, initialize with no IMU measurements */
PreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measured Angular Rate
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of integration errors
const bool use2ndOrderIntegration = false ///< Controls the order of integration
) : biasHat_(bias), measurementCovariance_(9,9), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()), deltaTij_(0.0),
delPdelBiasAcc_(Matrix3::Zero()), delPdelBiasOmega_(Matrix3::Zero()),
delVdelBiasAcc_(Matrix3::Zero()), delVdelBiasOmega_(Matrix3::Zero()),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(9,9), use2ndOrderIntegration_(use2ndOrderIntegration)
{
measurementCovariance_ << integrationErrorCovariance , Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), measuredAccCovariance, Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), measuredOmegaCovariance;
PreintMeasCov_ = Matrix::Zero(9,9);
}
PreintegratedMeasurements() :
biasHat_(imuBias::ConstantBias()), measurementCovariance_(9,9), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()), deltaTij_(0.0),
delPdelBiasAcc_(Matrix3::Zero()), delPdelBiasOmega_(Matrix3::Zero()),
delVdelBiasAcc_(Matrix3::Zero()), delVdelBiasOmega_(Matrix3::Zero()),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(9,9), use2ndOrderIntegration_(false)
{
measurementCovariance_ = Matrix::Zero(9,9);
PreintMeasCov_ = Matrix::Zero(9,9);
}
/**
* Default constructor, initializes the class with no measurements
* @param bias Current estimate of acceleration and rotation rate biases
* @param measuredAccCovariance Covariance matrix of measuredAcc
* @param measuredOmegaCovariance Covariance matrix of measured Angular Rate
* @param integrationErrorCovariance Covariance matrix of integration errors (velocity -> position)
* @param use2ndOrderIntegration Controls the order of integration
* (if false: p(t+1) = p(t) + v(t) deltaT ; if true: p(t+1) = p(t) + v(t) deltaT + 0.5 * acc(t) deltaT^2)
*/
PreintegratedMeasurements(const imuBias::ConstantBias& bias,
const Matrix3& measuredAccCovariance, const Matrix3& measuredOmegaCovariance,
const Matrix3& integrationErrorCovariance, const bool use2ndOrderIntegration = false);
/** print */
void print(const std::string& s = "Preintegrated Measurements:") const {
std::cout << s << std::endl;
biasHat_.print(" biasHat");
std::cout << " deltaTij " << deltaTij_ << std::endl;
std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
deltaRij_.print(" deltaRij ");
std::cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << std::endl;
}
/// print
void print(const std::string& s = "Preintegrated Measurements:") const;
/** equals */
bool equals(const PreintegratedMeasurements& expected, double tol=1e-9) const {
return biasHat_.equals(expected.biasHat_, tol)
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
&& deltaRij_.equals(expected.deltaRij_, tol)
&& std::fabs(deltaTij_ - expected.deltaTij_) < tol
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
}
Matrix measurementCovariance() const {return measurementCovariance_;}
Matrix deltaRij() const {return deltaRij_.matrix();}
double deltaTij() const{return deltaTij_;}
Vector deltaPij() const {return deltaPij_;}
Vector deltaVij() const {return deltaVij_;}
Vector biasHat() const { return biasHat_.vector();}
Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
Matrix preintMeasCov() const { return PreintMeasCov_;}
/// equals
bool equals(const PreintegratedMeasurements& expected, double tol=1e-9) const;
/// Re-initialize PreintegratedMeasurements
void resetIntegration();
void resetIntegration(){
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
deltaRij_ = Rot3();
deltaTij_ = 0.0;
delPdelBiasAcc_ = Matrix3::Zero();
delPdelBiasOmega_ = Matrix3::Zero();
delVdelBiasAcc_ = Matrix3::Zero();
delVdelBiasOmega_ = Matrix3::Zero();
delRdelBiasOmega_ = Matrix3::Zero();
PreintMeasCov_ = Matrix::Zero(9,9);
}
/**
* Add a single IMU measurement to the preintegration.
* @param measuredAcc Measured acceleration (in body frame, as given by the sensor)
* @param measuredOmega Measured angular velocity (as given by the sensor)
* @param deltaT Time interval between two consecutive IMU measurements
* @param body_P_sensor Optional sensor frame (pose of the IMU in the body frame)
*/
void integrateMeasurement(const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT,
boost::optional<const Pose3&> body_P_sensor = boost::none);
/** Add a single IMU measurement to the preintegration. */
void integrateMeasurement(
const Vector3& measuredAcc, ///< Measured linear acceleration (in body frame)
const Vector3& measuredOmega, ///< Measured angular velocity (in body frame)
double deltaT, ///< Time step
boost::optional<const Pose3&> body_P_sensor = boost::none ///< Sensor frame
) {
/// methods to access class variables
Matrix measurementCovariance() const {return measurementCovariance_;}
Matrix deltaRij() const {return deltaRij_.matrix();}
double deltaTij() const{return deltaTij_;}
Vector deltaPij() const {return deltaPij_;}
Vector deltaVij() const {return deltaVij_;}
Vector biasHat() const { return biasHat_.vector();}
Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
Matrix preintMeasCov() const { return PreintMeasCov_;}
// NOTE: order is important here because each update uses old values.
// First we compensate the measurements for the bias
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
// Note: all delta terms refer to an IMU\sensor system at t0
Vector body_t_a_body = msr_acc_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
}
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if(body_P_sensor){
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
}else{
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
}
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
// Update preintegrated measurements covariance
/* ----------------------------------------------------------------------------------------------------------------------- */
Matrix3 Z_3x3 = Matrix3::Zero();
Matrix3 I_3x3 = Matrix3::Identity();
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3(theta_i);
Rot3 Rot_j = deltaRij_ * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(theta_j);
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework
Matrix H_pos_pos = I_3x3;
Matrix H_pos_vel = I_3x3 * deltaT;
Matrix H_pos_angles = Z_3x3;
Matrix H_vel_pos = Z_3x3;
Matrix H_vel_vel = I_3x3;
Matrix H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
Matrix H_angles_pos = Z_3x3;
Matrix H_angles_vel = Z_3x3;
Matrix H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
// analytic expression corresponding to the following numerical derivative
// Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(9,9);
F << H_pos_pos, H_pos_vel, H_pos_angles,
H_vel_pos, H_vel_vel, H_vel_angles,
H_angles_pos, H_angles_vel, H_angles_angles;
// first order uncertainty propagation:
// the deltaT allows to pass from continuous time noise to discrete time noise
// measurementCovariance_discrete = measurementCovariance_contTime * (1/deltaT)
// Gt * Qt * G =(approx)= measurementCovariance_discrete * deltaT^2 = measurementCovariance_contTime * deltaT
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + measurementCovariance_ * deltaT ;
// Extended version, without approximation: Gt * Qt * G =(approx)= measurementCovariance_contTime * deltaT
//
// Matrix G(9,9);
// G << I_3x3 * deltaT, Z_3x3, Z_3x3,
// Z_3x3, deltaRij.matrix() * deltaT, Z_3x3,
// Z_3x3, Z_3x3, Jrinv_theta_j * Jr_theta_incr * deltaT;
//
// PreintMeasCov = F * PreintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G.transpose();
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
deltaPij_ += deltaVij_ * deltaT;
}else{
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
}
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
deltaRij_ = deltaRij_ * Rincr;
deltaTij_ += deltaT;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt,
const Vector3& delta_angles, const Vector& delta_vel_in_t0){
// Note: all delta terms refer to an IMU\sensor system at t0
Vector body_t_a_body = msr_acc_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt;
}
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
const Vector3& delta_angles){
// Note: all delta terms refer to an IMU\sensor system at t0
// Calculate the corrected measurements using the Bias object
Vector body_t_omega_body= msr_gyro_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
const Vector3& delta_angles){
// Note: all delta terms refer to an IMU\sensor system at t0
// Calculate the corrected measurements using the Bias object
Vector body_t_omega_body= msr_gyro_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
private:
/** Serialization function */
@ -336,65 +208,41 @@ struct PoseVelocity {
#endif
/** Default constructor - only use for serialization */
ImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero()), use2ndOrderCoriolis_(false){}
ImuFactor();
/** Constructor */
ImuFactor(
Key pose_i, ///< previous pose key
Key vel_i, ///< previous velocity key
Key pose_j, ///< current pose key
Key vel_j, ///< current velocity key
Key bias, ///< previous bias key
const PreintegratedMeasurements& preintegratedMeasurements, ///< preintegrated IMU measurements
const Vector3& gravity, ///< gravity vector
const Vector3& omegaCoriolis, ///< rotation rate of the inertial frame
boost::optional<const Pose3&> body_P_sensor = boost::none, ///< The Pose of the sensor frame in the body frame
const bool use2ndOrderCoriolis = false ///< When true, the second-order term is used in the calculation of the Coriolis Effect
) :
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias),
preintegratedMeasurements_(preintegratedMeasurements),
gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
body_P_sensor_(body_P_sensor),
use2ndOrderCoriolis_(use2ndOrderCoriolis){
}
/**
* Constructor
* @param pose_i Previous pose key
* @param vel_i Previous velocity key
* @param pose_j Current pose key
* @param vel_j Current velocity key
* @param bias Previous bias key
* @param preintegratedMeasurements Preintegrated IMU measurements
* @param gravity Gravity vector expressed in the global frame
* @param omegaCoriolis Rotation rate of the global frame w.r.t. an inertial frame
* @param body_P_sensor Optional pose of the sensor frame in the body frame
* @param use2ndOrderCoriolis When true, the second-order term is used in the calculation of the Coriolis Effect
*/
ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias,
const PreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor = boost::none, const bool use2ndOrderCoriolis = false);
virtual ~ImuFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
virtual gtsam::NonlinearFactor::shared_ptr clone() const;
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "ImuFactor("
<< keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ","
<< keyFormatter(this->key3()) << ","
<< keyFormatter(this->key4()) << ","
<< keyFormatter(this->key5()) << ")\n";
preintegratedMeasurements_.print(" preintegrated measurements:");
std::cout << " gravity: [ " << gravity_.transpose() << " ]" << std::endl;
std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << std::endl;
this->noiseModel_->print(" noise model: ");
if(this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
/// print
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/** equals */
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
const This *e = dynamic_cast<const This*> (&expected);
return e != NULL && Base::equals(*e, tol)
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// equals
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const;
/** Access the preintegrated measurements. */
const PreintegratedMeasurements& preintegratedMeasurements() const {
return preintegratedMeasurements_; }
@ -404,205 +252,19 @@ struct PoseVelocity {
/** implement functions needed to derive from Factor */
/** vector of errors */
/// vector of errors
Vector evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none,
boost::optional<Matrix&> H4 = boost::none,
boost::optional<Matrix&> H5 = boost::none) const
{
boost::optional<Matrix&> H5 = boost::none) const;
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
// we give some shorter name to rotations and translations
const Rot3 Rot_i = pose_i.rotation();
const Rot3 Rot_j = pose_j.rotation();
const Vector3 pos_i = pose_i.translation().vector();
const Vector3 pos_j = pose_j.translation().vector();
// We compute factor's Jacobians
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
const Matrix3 Jr_theta_bcc = Rot3::rightJacobianExpMapSO3(theta_biascorrected_corioliscorrected);
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
const Matrix3 Jrinv_fRhat = Rot3::rightJacobianExpMapSO3inverse(Rot3::Logmap(fRhat));
if(H1) {
H1->resize(9,6);
Matrix3 dfPdPi;
Matrix3 dfVdPi;
if(use2ndOrderCoriolis_){
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
}
else{
dfPdPi = - Rot_i.matrix();
dfVdPi = Matrix3::Zero();
}
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
// dfP/dPi
dfPdPi,
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
// dfV/dPi
dfVdPi,
// dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi
Matrix3::Zero();
}
if(H2) {
H2->resize(9,3);
(*H2) <<
// dfP/dVi
- Matrix3::Identity() * deltaTij
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
- Matrix3::Identity()
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
// dfR/dVi
Matrix3::Zero();
}
if(H3) {
H3->resize(9,6);
(*H3) <<
// dfP/dPosej
Matrix3::Zero(), Rot_j.matrix(),
// dfV/dPosej
Matrix::Zero(3,6),
// dfR/dPosej
Jrinv_fRhat * ( Matrix3::Identity() ), Matrix3::Zero();
}
if(H4) {
H4->resize(9,3);
(*H4) <<
// dfP/dVj
Matrix3::Zero(),
// dfV/dVj
Matrix3::Identity(),
// dfR/dVj
Matrix3::Zero();
}
if(H5) {
const Matrix3 Jrinv_theta_bc = Rot3::rightJacobianExpMapSO3inverse(theta_biascorrected);
const Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
H5->resize(9,6);
(*H5) <<
// dfP/dBias
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
// dfV/dBias
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
// dfR/dBias
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega);
}
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 fp =
pos_j - pos_i
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
- vel_i * deltaTij
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- 0.5 * gravity_ * deltaTij*deltaTij;
const Vector3 fv =
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- gravity_ * deltaTij;
const Vector3 fR = Rot3::Logmap(fRhat);
Vector r(9); r << fp, fv, fR;
return r;
}
/** predicted states from IMU */
/// predicted states from IMU
static PoseVelocity Predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias, const PreintegratedMeasurements preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, boost::optional<const Pose3&> body_P_sensor = boost::none,
const bool use2ndOrderCoriolis = false)
{
const double& deltaTij = preintegratedMeasurements.deltaTij_;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
const Rot3 Rot_i = pose_i.rotation();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
if(use2ndOrderCoriolis){
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected =
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
return PoseVelocity(pose_j, vel_j);
}
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false);
private:
@ -617,7 +279,7 @@ struct PoseVelocity {
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
}; // \class ImuFactor
}; // class ImuFactor
typedef ImuFactor::PreintegratedMeasurements ImuFactorPreintegratedMeasurements;

View File

@ -10,19 +10,22 @@
* -------------------------------------------------------------------------- */
/**
* @file testImuFactor.cpp
* @brief Unit test for ImuFactor
* @author Luca Carlone, Stephen Williams, Richard Roberts
* @file testCombinedImuFactor.cpp
* @brief Unit test for Lupton-style combined IMU factor
* @author Luca Carlone
* @author Stephen Williams
* @author Richard Roberts
*/
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>

View File

@ -39,15 +39,13 @@ using symbol_shorthand::B;
namespace {
Vector callEvaluateError(const ImuFactor& factor,
const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias)
{
const imuBias::ConstantBias& bias){
return factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias);
}
Rot3 evaluateRotationError(const ImuFactor& factor,
const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias)
{
const imuBias::ConstantBias& bias){
return Rot3::Expmap(factor.evaluateError(pose_i, vel_i, pose_j, vel_j, bias).tail(3) ) ;
}
@ -56,9 +54,7 @@ ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0)
)
{
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) ){
ImuFactor::PreintegratedMeasurements result(bias, Matrix3::Identity(),
Matrix3::Identity(), Matrix3::Identity());
@ -68,7 +64,6 @@ ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
for( ; itAcc != measuredAccs.end(); ++itAcc, ++itOmega, ++itDeltaT) {
result.integrateMeasurement(*itAcc, *itOmega, *itDeltaT);
}
return result;
}
@ -77,8 +72,7 @@ Vector3 evaluatePreintegratedMeasurementsPosition(
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) ){
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaPij();
}
@ -99,20 +93,16 @@ Rot3 evaluatePreintegratedMeasurementsRotation(
const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) ){
return Rot3(evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaRij());
}
Rot3 evaluateRotation(const Vector3 measuredOmega, const Vector3 biasOmega, const double deltaT)
{
Rot3 evaluateRotation(const Vector3 measuredOmega, const Vector3 biasOmega, const double deltaT){
return Rot3::Expmap((measuredOmega - biasOmega) * deltaT);
}
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta)
{
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta){
return Rot3::Logmap( Rot3::Expmap(thetahat).compose( Rot3::Expmap(deltatheta) ) );
}
@ -212,7 +202,6 @@ TEST( ImuFactor, Error )
Matrix H1a, H2a, H3a, H4a, H5a;
(void) factor.evaluateError(x1, v1, x2, v2, bias, H1a, H2a, H3a, H4a, H5a);
// positions and velocities
Matrix H1etop6 = H1e.topRows(6);
Matrix H1atop6 = H1a.topRows(6);
@ -230,7 +219,7 @@ TEST( ImuFactor, Error )
EXPECT(assert_equal(RH3e, H3a.bottomRows(3), 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
EXPECT(assert_equal(H4e, H4a));
// EXPECT(assert_equal(H5e, H5a));
// EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
@ -243,7 +232,6 @@ TEST( ImuFactor, ErrorWithBiases )
// Pose3 x2(Rot3::RzRyRx(M_PI/12.0 + M_PI/10.0, M_PI/6.0, M_PI/4.0), Point3(5.5, 1.0, -50.0));
// Vector3 v2(Vector3(0.5, 0.0, 0.0));
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI/4.0)), Point3(5.0, 1.0, -50.0));
Vector3 v1(Vector3(0.5, 0.0, 0.0));
@ -260,8 +248,8 @@ TEST( ImuFactor, ErrorWithBiases )
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// ImuFactor::PreintegratedMeasurements pre_int_data(bias.head(3), bias.tail(3));
// pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// ImuFactor::PreintegratedMeasurements pre_int_data(bias.head(3), bias.tail(3));
// pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
@ -272,7 +260,7 @@ TEST( ImuFactor, ErrorWithBiases )
// Expected error
Vector errorExpected(9); errorExpected << 0, 0, 0, 0, 0, 0, 0, 0, 0;
// EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
// EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
// Expected Jacobians
Matrix H1e = numericalDerivative11<Vector,Pose3>(
@ -315,7 +303,6 @@ TEST( ImuFactor, PartialDerivativeExpmap )
Vector3 measuredOmega; measuredOmega << 0.1, 0, 0;
double deltaT = 0.5;
// Compute numerical derivatives
Matrix expectedDelRdelBiasOmega = numericalDerivative11<Rot3, Vector3>(boost::bind(
&evaluateRotation, measuredOmega, _1, deltaT), Vector3(biasOmega));
@ -326,7 +313,6 @@ TEST( ImuFactor, PartialDerivativeExpmap )
// Compare Jacobians
EXPECT(assert_equal(expectedDelRdelBiasOmega, actualdelRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
/* ************************************************************************* */
@ -349,9 +335,6 @@ TEST( ImuFactor, PartialDerivativeLogmap )
const Matrix3 actualDelFdeltheta = Matrix3::Identity() +
0.5 * X + (1/(normx*normx) - (1+cos(normx))/(2*normx * sin(normx)) ) * X * X;
// std::cout << "actualDelFdeltheta" << actualDelFdeltheta << std::endl;
// std::cout << "expectedDelFdeltheta" << expectedDelFdeltheta << std::endl;
// Compare Jacobians
EXPECT(assert_equal(expectedDelFdeltheta, actualDelFdeltheta));
@ -361,30 +344,30 @@ TEST( ImuFactor, PartialDerivativeLogmap )
TEST( ImuFactor, fistOrderExponential )
{
// Linearization point
Vector3 biasOmega; biasOmega << 0,0,0; ///< Current estimate of rotation rate bias
Vector3 biasOmega; biasOmega << 0,0,0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 measuredOmega; measuredOmega << 0.1, 0, 0;
double deltaT = 1.0;
// Measurements
Vector3 measuredOmega; measuredOmega << 0.1, 0, 0;
double deltaT = 1.0;
// change w.r.t. linearization point
double alpha = 0.0;
Vector3 deltabiasOmega; deltabiasOmega << alpha,alpha,alpha;
// change w.r.t. linearization point
double alpha = 0.0;
Vector3 deltabiasOmega; deltabiasOmega << alpha,alpha,alpha;
const Matrix3 Jr = Rot3::rightJacobianExpMapSO3((measuredOmega - biasOmega) * deltaT);
const Matrix3 Jr = Rot3::rightJacobianExpMapSO3((measuredOmega - biasOmega) * deltaT);
Matrix3 delRdelBiasOmega = - Jr * deltaT; // the delta bias appears with the minus sign
Matrix3 delRdelBiasOmega = - Jr * deltaT; // the delta bias appears with the minus sign
const Matrix expectedRot = Rot3::Expmap((measuredOmega - biasOmega - deltabiasOmega) * deltaT).matrix();
const Matrix expectedRot = Rot3::Expmap((measuredOmega - biasOmega - deltabiasOmega) * deltaT).matrix();
const Matrix3 hatRot = Rot3::Expmap((measuredOmega - biasOmega) * deltaT).matrix();
const Matrix3 actualRot =
hatRot * Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
//hatRot * (Matrix3::Identity() + skewSymmetric(delRdelBiasOmega * deltabiasOmega));
const Matrix3 hatRot = Rot3::Expmap((measuredOmega - biasOmega) * deltaT).matrix();
const Matrix3 actualRot =
hatRot * Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
//hatRot * (Matrix3::Identity() + skewSymmetric(delRdelBiasOmega * deltabiasOmega));
// Compare Jacobians
EXPECT(assert_equal(expectedRot, actualRot));
// Compare Jacobians
EXPECT(assert_equal(expectedRot, actualRot));
}
/* ************************************************************************* */
@ -495,7 +478,6 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
// tictoc_print_();
//}
/* ************************************************************************* */
TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement )
{
@ -515,15 +497,9 @@ TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement )
const Pose3 body_P_sensor(Rot3::Expmap(Vector3(0,0.10,0.10)), Point3(1,0,0));
// ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
// Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), measuredOmega);
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
@ -560,6 +536,7 @@ TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement )
EXPECT(assert_equal(H5e, H5a));
}
/* ************************************************************************* */
TEST(ImuFactor, PredictPositionAndVelocity){
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
@ -593,6 +570,7 @@ TEST(ImuFactor, PredictPositionAndVelocity){
}
/* ************************************************************************* */
TEST(ImuFactor, PredictRotation) {
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)