Merge pull request #2135 from borglab/hybrid-improvements
commit
bbd0ef5a47
|
@ -71,16 +71,14 @@ DiscreteValues DiscreteBayesNet::sample(DiscreteValues result) const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
// The implementation is: build the entire joint into one factor and then prune.
|
||||
// TODO(Frank): This can be quite expensive *unless* the factors have already
|
||||
// NOTE(Frank): This can be quite expensive *unless* the factors have already
|
||||
// been pruned before. Another, possibly faster approach is branch and bound
|
||||
// search to find the K-best leaves and then create a single pruned conditional.
|
||||
DiscreteBayesNet DiscreteBayesNet::prune(
|
||||
size_t maxNrLeaves, const std::optional<double>& marginalThreshold,
|
||||
DiscreteValues* fixedValues) const {
|
||||
// Multiply into one big conditional. NOTE: possibly quite expensive.
|
||||
DiscreteConditional joint;
|
||||
for (const DiscreteConditional::shared_ptr& conditional : *this)
|
||||
joint = joint * (*conditional);
|
||||
DiscreteConditional joint = this->joint();
|
||||
|
||||
// Prune the joint. NOTE: imperative and, again, possibly quite expensive.
|
||||
DiscreteConditional pruned = joint;
|
||||
|
@ -122,6 +120,15 @@ DiscreteBayesNet DiscreteBayesNet::prune(
|
|||
return result;
|
||||
}
|
||||
|
||||
/* *********************************************************************** */
|
||||
DiscreteConditional DiscreteBayesNet::joint() const {
|
||||
DiscreteConditional joint;
|
||||
for (const DiscreteConditional::shared_ptr& conditional : *this)
|
||||
joint = joint * (*conditional);
|
||||
|
||||
return joint;
|
||||
}
|
||||
|
||||
/* *********************************************************************** */
|
||||
std::string DiscreteBayesNet::markdown(
|
||||
const KeyFormatter& keyFormatter,
|
||||
|
|
|
@ -136,6 +136,16 @@ class GTSAM_EXPORT DiscreteBayesNet: public BayesNet<DiscreteConditional> {
|
|||
const std::optional<double>& marginalThreshold = {},
|
||||
DiscreteValues* fixedValues = nullptr) const;
|
||||
|
||||
/**
|
||||
* @brief Multiply all conditionals into one big joint conditional
|
||||
* and return it.
|
||||
*
|
||||
* NOTE: possibly quite expensive.
|
||||
*
|
||||
* @return DiscreteConditional
|
||||
*/
|
||||
DiscreteConditional joint() const;
|
||||
|
||||
///@}
|
||||
/// @name Wrapper support
|
||||
/// @{
|
||||
|
|
|
@ -108,7 +108,9 @@ static Eigen::SparseVector<double> ComputeSparseTable(
|
|||
*
|
||||
*/
|
||||
auto op = [&](const Assignment<Key>& assignment, double p) {
|
||||
if (p > 0) {
|
||||
// Check if greater than 1e-11 because we consider
|
||||
// smaller than that as numerically 0
|
||||
if (p > 1e-11) {
|
||||
// Get all the keys involved in this assignment
|
||||
KeySet assignmentKeys;
|
||||
for (auto&& [k, _] : assignment) {
|
||||
|
|
|
@ -53,11 +53,11 @@ HybridBayesNet HybridBayesNet::prune(
|
|||
|
||||
// Prune discrete Bayes net
|
||||
DiscreteValues fixed;
|
||||
auto prunedBN = marginal.prune(maxNrLeaves, marginalThreshold, &fixed);
|
||||
DiscreteBayesNet prunedBN =
|
||||
marginal.prune(maxNrLeaves, marginalThreshold, &fixed);
|
||||
|
||||
// Multiply into one big conditional. NOTE: possibly quite expensive.
|
||||
DiscreteConditional pruned;
|
||||
for (auto &&conditional : prunedBN) pruned = pruned * (*conditional);
|
||||
DiscreteConditional pruned = prunedBN.joint();
|
||||
|
||||
// Set the fixed values if requested.
|
||||
if (marginalThreshold && fixedValues) {
|
||||
|
|
|
@ -86,13 +86,28 @@ Ordering HybridSmoother::maybeComputeOrdering(
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridSmoother::removeFixedValues(
|
||||
HybridGaussianFactorGraph HybridSmoother::removeFixedValues(
|
||||
const HybridGaussianFactorGraph &graph,
|
||||
const HybridGaussianFactorGraph &newFactors) {
|
||||
for (Key key : newFactors.discreteKeySet()) {
|
||||
// Initialize graph
|
||||
HybridGaussianFactorGraph updatedGraph(graph);
|
||||
|
||||
for (DiscreteKey dkey : newFactors.discreteKeys()) {
|
||||
Key key = dkey.first;
|
||||
if (fixedValues_.find(key) != fixedValues_.end()) {
|
||||
// Add corresponding discrete factor to reintroduce the information
|
||||
std::vector<double> probabilities(
|
||||
dkey.second, (1 - *marginalThreshold_) / dkey.second);
|
||||
probabilities[fixedValues_[key]] = *marginalThreshold_;
|
||||
DecisionTreeFactor dtf({dkey}, probabilities);
|
||||
updatedGraph.push_back(dtf);
|
||||
|
||||
// Remove fixed value
|
||||
fixedValues_.erase(key);
|
||||
}
|
||||
}
|
||||
|
||||
return updatedGraph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -126,6 +141,11 @@ void HybridSmoother::update(const HybridNonlinearFactorGraph &newFactors,
|
|||
<< std::endl;
|
||||
#endif
|
||||
|
||||
if (marginalThreshold_) {
|
||||
// Remove fixed values for discrete keys which are introduced in newFactors
|
||||
updatedGraph = removeFixedValues(updatedGraph, newFactors);
|
||||
}
|
||||
|
||||
Ordering ordering = this->maybeComputeOrdering(updatedGraph, given_ordering);
|
||||
|
||||
#if GTSAM_HYBRID_TIMING
|
||||
|
@ -145,9 +165,6 @@ void HybridSmoother::update(const HybridNonlinearFactorGraph &newFactors,
|
|||
}
|
||||
#endif
|
||||
|
||||
// Remove fixed values for discrete keys which are introduced in newFactors
|
||||
removeFixedValues(newFactors);
|
||||
|
||||
#ifdef DEBUG_SMOOTHER
|
||||
// Print discrete keys in the bayesNetFragment:
|
||||
std::cout << "Discrete keys in bayesNetFragment: ";
|
||||
|
|
|
@ -145,8 +145,19 @@ class GTSAM_EXPORT HybridSmoother {
|
|||
Ordering maybeComputeOrdering(const HybridGaussianFactorGraph& updatedGraph,
|
||||
const std::optional<Ordering> givenOrdering);
|
||||
|
||||
/// Remove fixed discrete values for discrete keys introduced in `newFactors`.
|
||||
void removeFixedValues(const HybridGaussianFactorGraph& newFactors);
|
||||
/**
|
||||
* @brief Remove fixed discrete values for discrete keys
|
||||
* introduced in `newFactors`, and reintroduce discrete factors
|
||||
* with marginalThreshold_ as the probability value.
|
||||
*
|
||||
* @param graph The factor graph with previous conditionals added in.
|
||||
* @param newFactors The new factors added to the smoother,
|
||||
* used to check if a fixed discrete value has been reintroduced.
|
||||
* @return HybridGaussianFactorGraph
|
||||
*/
|
||||
HybridGaussianFactorGraph removeFixedValues(
|
||||
const HybridGaussianFactorGraph& graph,
|
||||
const HybridGaussianFactorGraph& newFactors);
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -152,6 +152,7 @@ class HybridBayesNet {
|
|||
gtsam::HybridGaussianFactorGraph toFactorGraph(
|
||||
const gtsam::VectorValues& measurements) const;
|
||||
|
||||
gtsam::DiscreteBayesNet discreteMarginal() const;
|
||||
gtsam::GaussianBayesNet choose(const gtsam::DiscreteValues& assignment) const;
|
||||
|
||||
gtsam::HybridValues optimize() const;
|
||||
|
|
Loading…
Reference in New Issue