Moved static functions to RegularImplicit and now use templates

release/4.3a0
dellaert 2015-03-01 15:48:11 +01:00
parent 94c70dd7bc
commit bb58814f1c
1 changed files with 7 additions and 113 deletions

View File

@ -352,114 +352,6 @@ public:
augmentedHessian);
}
/**
* Do Schur complement, given Jacobian as F,E,P, return SymmetricBlockMatrix
* Fast version - works on with sparsity
*/
static void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
const Matrix& E, const Matrix3& P /*Point Covariance*/, const Vector& b,
/*output ->*/SymmetricBlockMatrix& augmentedHessian) {
// Schur complement trick
// G = F' * F - F' * E * P * E' * F
// g = F' * (b - E * P * E' * b)
// a single point is observed in m cameras
size_t m = Fblocks.size();
// Blockwise Schur complement
for (size_t i = 0; i < m; i++) { // for each camera
const Matrix2D& Fi = Fblocks.at(i).second;
const Matrix23 Ei_P = E.block<ZDim, 3>(ZDim * i, 0) * P;
// Dim = (Dx2) * (2)
augmentedHessian(i, m) = Fi.transpose() * b.segment<ZDim>(ZDim * i) // F' * b
- Fi.transpose() * (Ei_P * (E.transpose() * b)); // Dim = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
augmentedHessian(i, i) = Fi.transpose()
* (Fi - Ei_P * E.block<ZDim, 3>(ZDim * i, 0).transpose() * Fi);
// upper triangular part of the hessian
for (size_t j = i + 1; j < m; j++) { // for each camera
const Matrix2D& Fj = Fblocks.at(j).second;
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian(i, j) = -Fi.transpose()
* (Ei_P * E.block<ZDim, 3>(ZDim * j, 0).transpose() * Fj);
}
} // end of for over cameras
}
/**
* Applies Schur complement (exploiting block structure) to get a smart factor on cameras,
* and adds the contribution of the smart factor to a pre-allocated augmented Hessian.
*/
static void updateSparseSchurComplement(
const std::vector<KeyMatrix2D>& Fblocks, const Matrix& E,
const Matrix3& P /*Point Covariance*/, const Vector& b, const double f,
const FastVector<Key>& keys, const FastMap<Key, size_t>& KeySlotMap,
/*output ->*/SymmetricBlockMatrix& augmentedHessian) {
// Schur complement trick
// G = F' * F - F' * E * P * E' * F
// g = F' * (b - E * P * E' * b)
MatrixDD matrixBlock;
typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
// a single point is observed in m cameras
size_t m = Fblocks.size(); // cameras observing current point
size_t aug_m = (augmentedHessian.rows() - 1) / Dim; // all cameras in the group
// Blockwise Schur complement
for (size_t i = 0; i < m; i++) { // for each camera in the current factor
const Matrix2D& Fi = Fblocks.at(i).second;
const Matrix23 Ei_P = E.block<ZDim, 3>(ZDim * i, 0) * P;
// Dim = (DxZDim) * (ZDim)
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
// Key cameraKey_i = this->keys_[i];
DenseIndex aug_i = KeySlotMap.at(keys[i]);
// information vector - store previous vector
// vectorBlock = augmentedHessian(aug_i, aug_m).knownOffDiagonal();
// add contribution of current factor
augmentedHessian(aug_i, aug_m) =
augmentedHessian(aug_i, aug_m).knownOffDiagonal()
+ Fi.transpose() * b.segment<ZDim>(ZDim * i) // F' * b
- Fi.transpose() * (Ei_P * (E.transpose() * b)); // Dim = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
// main block diagonal - store previous block
matrixBlock = augmentedHessian(aug_i, aug_i);
// add contribution of current factor
augmentedHessian(aug_i, aug_i) = matrixBlock
+ (Fi.transpose()
* (Fi - Ei_P * E.block<ZDim, 3>(ZDim * i, 0).transpose() * Fi));
// upper triangular part of the hessian
for (size_t j = i + 1; j < m; j++) { // for each camera
const Matrix2D& Fj = Fblocks.at(j).second;
//Key cameraKey_j = this->keys_[j];
DenseIndex aug_j = KeySlotMap.at(keys[j]);
// (DxD) = (DxZDim) * ( (ZDimxZDim) * (ZDimxD) )
// off diagonal block - store previous block
// matrixBlock = augmentedHessian(aug_i, aug_j).knownOffDiagonal();
// add contribution of current factor
augmentedHessian(aug_i, aug_j) =
augmentedHessian(aug_i, aug_j).knownOffDiagonal()
- Fi.transpose()
* (Ei_P * E.block<ZDim, 3>(ZDim * j, 0).transpose() * Fj);
}
} // end of for over cameras
augmentedHessian(aug_m, aug_m)(0, 0) += f;
}
/**
* Applies Schur complement (exploiting block structure) to get a smart factor on cameras,
* and adds the contribution of the smart factor to a pre-allocated augmented Hessian.
@ -471,7 +363,8 @@ public:
FastMap<Key, size_t> KeySlotMap;
for (size_t slot = 0; slot < allKeys.size(); slot++)
KeySlotMap.insert(std::make_pair(allKeys[slot], slot));
updateSparseSchurComplement(Fblocks, E, P, b, f, augmentedHessian);
RegularImplicitSchurFactor<Dim>::updateSparseSchurComplement(Fblocks, E, P,
b, f, this->keys_, KeySlotMap, augmentedHessian);
}
/**
@ -504,16 +397,17 @@ public:
/**
* Return Jacobians as RegularImplicitSchurFactor with raw access
*/
boost::shared_ptr<RegularImplicitSchurFactor<Dim> > createRegularImplicitSchurFactor(
const Cameras& cameras, const Point3& point, double lambda = 0.0,
bool diagonalDamping = false) const {
boost::shared_ptr<RegularImplicitSchurFactor<Dim, ZDim> > //
createRegularImplicitSchurFactor(const Cameras& cameras, const Point3& point,
double lambda = 0.0, bool diagonalDamping = false) const {
std::vector<KeyMatrix2D> F;
Matrix E;
Vector b;
computeJacobians(F, E, b, cameras, point);
whitenJacobians(F, E, b);
Matrix3 P = PointCov(E, lambda, diagonalDamping);
return boost::make_shared<RegularImplicitSchurFactor<Dim> >(F, E, P, b);
return boost::make_shared<RegularImplicitSchurFactor<Dim, ZDim> >(F, E, P,
b);
}
/**