expNormalize, from Kevin Doherty
parent
785b39d3c0
commit
b875914f93
|
@ -17,12 +17,59 @@
|
||||||
* @author Frank Dellaert
|
* @author Frank Dellaert
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/base/Vector.h>
|
||||||
#include <gtsam/discrete/DiscreteFactor.h>
|
#include <gtsam/discrete/DiscreteFactor.h>
|
||||||
|
|
||||||
|
#include <cmath>
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
std::vector<double> expNormalize(const std::vector<double>& logProbs) {
|
||||||
|
double maxLogProb = -std::numeric_limits<double>::infinity();
|
||||||
|
for (size_t i = 0; i < logProbs.size(); i++) {
|
||||||
|
double logProb = logProbs[i];
|
||||||
|
if ((logProb != std::numeric_limits<double>::infinity()) &&
|
||||||
|
logProb > maxLogProb) {
|
||||||
|
maxLogProb = logProb;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// After computing the max = "Z" of the log probabilities L_i, we compute
|
||||||
|
// the log of the normalizing constant, log S, where S = sum_j exp(L_j - Z).
|
||||||
|
double total = 0.0;
|
||||||
|
for (size_t i = 0; i < logProbs.size(); i++) {
|
||||||
|
double probPrime = exp(logProbs[i] - maxLogProb);
|
||||||
|
total += probPrime;
|
||||||
|
}
|
||||||
|
double logTotal = log(total);
|
||||||
|
|
||||||
|
// Now we compute the (normalized) probability (for each i):
|
||||||
|
// p_i = exp(L_i - Z - log S)
|
||||||
|
double checkNormalization = 0.0;
|
||||||
|
std::vector<double> probs;
|
||||||
|
for (size_t i = 0; i < logProbs.size(); i++) {
|
||||||
|
double prob = exp(logProbs[i] - maxLogProb - logTotal);
|
||||||
|
probs.push_back(prob);
|
||||||
|
checkNormalization += prob;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Numerical tolerance for floating point comparisons
|
||||||
|
double tol = 1e-9;
|
||||||
|
|
||||||
|
if (!gtsam::fpEqual(checkNormalization, 1.0, tol)) {
|
||||||
|
std::string errMsg =
|
||||||
|
std::string("expNormalize failed to normalize probabilities. ") +
|
||||||
|
std::string("Expected normalization constant = 1.0. Got value: ") +
|
||||||
|
std::to_string(checkNormalization) +
|
||||||
|
std::string(
|
||||||
|
"\n This could have resulted from numerical overflow/underflow.");
|
||||||
|
throw std::logic_error(errMsg);
|
||||||
|
}
|
||||||
|
return probs;
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace gtsam
|
} // namespace gtsam
|
||||||
|
|
|
@ -122,4 +122,24 @@ public:
|
||||||
// traits
|
// traits
|
||||||
template<> struct traits<DiscreteFactor> : public Testable<DiscreteFactor> {};
|
template<> struct traits<DiscreteFactor> : public Testable<DiscreteFactor> {};
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Normalize a set of log probabilities.
|
||||||
|
*
|
||||||
|
* Normalizing a set of log probabilities in a numerically stable way is
|
||||||
|
* tricky. To avoid overflow/underflow issues, we compute the largest
|
||||||
|
* (finite) log probability and subtract it from each log probability before
|
||||||
|
* normalizing. This comes from the observation that if:
|
||||||
|
* p_i = exp(L_i) / ( sum_j exp(L_j) ),
|
||||||
|
* Then,
|
||||||
|
* p_i = exp(Z) exp(L_i - Z) / (exp(Z) sum_j exp(L_j - Z)),
|
||||||
|
* = exp(L_i - Z) / ( sum_j exp(L_j - Z) )
|
||||||
|
*
|
||||||
|
* Setting Z = max_j L_j, we can avoid numerical issues that arise when all
|
||||||
|
* of the (unnormalized) log probabilities are either very large or very
|
||||||
|
* small.
|
||||||
|
*/
|
||||||
|
std::vector<double> expNormalize(const std::vector<double> &logProbs);
|
||||||
|
|
||||||
|
|
||||||
}// namespace gtsam
|
}// namespace gtsam
|
||||||
|
|
Loading…
Reference in New Issue