update+relin combined for speed; new backsub/threshold confirmed to yield correct result

release/4.3a0
Michael Kaess 2010-09-09 23:54:39 +00:00
parent aca6602a32
commit b825655ba6
3 changed files with 438 additions and 379 deletions

View File

@ -211,7 +211,7 @@ namespace gtsam {
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
void ISAM2<Conditional, Config>::recalculate(const list<Symbol>& markedKeys, const FactorGraph<GaussianFactor>* newFactors) {
// Input: BayesTree(this), newFactors
@ -236,10 +236,11 @@ namespace gtsam {
// 1. Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
const list<Symbol> markedKeys = newFactors.keys();
tic("re-removetop");
Cliques orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(markedKeys, affectedBayesNet, orphans);
toc("re-removetop");
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
@ -252,7 +253,7 @@ namespace gtsam {
// BEGIN OF COPIED CODE
tic("linear_lookup1");
tic("re-lookup");
// ordering provides all keys in conditionals, there cannot be others because path to root included
set<Symbol> affectedKeys;
list<Symbol> tmp = affectedBayesNet.ordering();
@ -271,17 +272,23 @@ namespace gtsam {
<< " avgCliqueSize: " << avgClique << " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
#endif
toc("linear_lookup1");
toc("re-lookup");
tic("re-cached");
// add the cached intermediate results from the boundary of the orphans ...
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
factors.push_back(cachedBoundary);
toc("re-cached");
// END OF COPIED CODE
// 2. Add the new factors \Factors' into the resulting factor graph
factors.push_back(newFactors);
tic("re-newfactors");
if (newFactors) {
factors.push_back(*newFactors);
}
toc("re-newfactors");
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
@ -293,10 +300,11 @@ namespace gtsam {
// Ordering ordering = factors.getOrdering(); // original ordering, yields in bad performance
// eliminate into a Bayes net
tic("linear_eliminate");
tic("eliminate");
BayesNet<Conditional> bayesNet = _eliminate(factors, cached_, ordering);
toc("linear_eliminate");
toc("eliminate");
tic("re-assemble");
// Create Index from ordering
IndexTable<Symbol> index(ordering);
@ -307,9 +315,11 @@ namespace gtsam {
// Save number of affectedCliques
lastAffectedCliqueCount = this->size();
tic("re-assemble");
// 4. Insert the orphans back into the new Bayes tree.
tic("re-orphans");
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
@ -317,10 +327,18 @@ namespace gtsam {
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
toc("re-orphans");
// Output: BayesTree(this)
}
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
const list<Symbol> markedKeys = newFactors.keys();
recalculate(markedKeys, &newFactors);
}
/* ************************************************************************* */
// find all variables that are directly connected by a measurement to one of the marked variables
template<class Conditional, class Config>
@ -342,7 +360,7 @@ namespace gtsam {
/* ************************************************************************* */
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
list<Symbol> ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
// Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_
@ -378,6 +396,10 @@ namespace gtsam {
// add the cached marginal factors from its children, and re-eliminate.
// todo: for simplicity, currently simply remove the top and recreate it using the original ordering
//recalculate(affectedSymbols);
return affectedSymbols;
#if 0
tic("nonlin-mess");
Cliques orphans;
@ -430,9 +452,14 @@ namespace gtsam {
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
#endif
// Output: updated Bayes tree (this), updated linearization point theta_
}
list<Symbol> empty;
return empty;
}
/* ************************************************************************* */
@ -463,9 +490,10 @@ namespace gtsam {
tic("step3");
// 3. Linearize new factor
boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
// boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
toc("step3");
#if 0 // original algorithm
tic("step4");
// 4. Linear iSAM step (alg 3)
linear_update(*linearFactors); // in: this
@ -485,7 +513,37 @@ namespace gtsam {
// todo: not part of algorithm in paper: linearization point and delta_ do not fit... have to update delta again
delta_ = optimize2(*this, wildfire_threshold);
#else // new algorithm
tic("step4B");
// 4B. Mark linear update
list<Symbol> markedKeys = newFactors.keys();
toc("step4B");
tic("step5B");
// 5B. Mark nonlinear update
if (relinearize) {
list<Symbol> markedRelin = fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
// merge with markedKeys
markedKeys.splice(markedKeys.begin(), markedRelin, markedRelin.begin(), markedRelin.end());
markedKeys.sort(); // remove duplicates
markedKeys.unique();
}
toc("step5B");
tic("step6B");
// 6B. Redo top of Bayes tree
boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
recalculate(markedKeys, &(*linearFactors));
toc("step6B");
tic("step7B");
// 7B. Solve
delta_ = optimize2(*this, wildfire_threshold);
toc("step7B");
#endif
toc("all");
tictoc_print();

View File

@ -90,9 +90,10 @@ namespace gtsam {
boost::shared_ptr<GaussianFactorGraph> relinearizeAffectedFactors(const std::set<Symbol>& affectedKeys) const;
FactorGraph<GaussianFactor> getCachedBoundaryFactors(Cliques& orphans);
void recalculate(const std::list<Symbol>& markedKeys, const FactorGraph<GaussianFactor>* newFactors = NULL);
void linear_update(const FactorGraph<GaussianFactor>& newFactors);
void find_all(sharedClique clique, std::list<Symbol>& keys, const std::list<Symbol>& marked); // helper function
void fluid_relinearization(double relinearize_threshold);
std::list<Symbol> fluid_relinearization(double relinearize_threshold);
}; // ISAM2

View File

@ -63,7 +63,7 @@ void optimize2(const GaussianISAM2::sharedClique& clique, double threshold, set<
}
/* ************************************************************************* */
// fast version without threshold
// fast full version without threshold
void optimize2(const GaussianISAM2::sharedClique& clique, VectorConfig& result) {
// parents are assumed to already be solved and available in result
GaussianISAM2::Clique::const_reverse_iterator it;